test_lookahead.py 5.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
# 
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# 
#     http://www.apache.org/licenses/LICENSE-2.0
# 
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest
import numpy as np
from op_test import OpTest
from paddle.fluid import core
from paddle.fluid.op import Operator
import paddle.fluid as fluid
import paddle
import paddle.nn as nn
W
wanghuancoder 已提交
25
from paddle.fluid.framework import _test_eager_guard, _in_legacy_dygraph
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71

LOOKAHEAD_K = 5
LOOKAHEAD_ALPHA = 0.2
SGD_LR = 1.0


class TestLookAhead(unittest.TestCase):
    def test_lookahead_static(self):
        paddle.enable_static()
        place = fluid.CPUPlace()
        shape = [2, 3, 8, 8]
        exe = fluid.Executor(place)
        train_program = fluid.Program()
        startup = fluid.Program()
        with fluid.program_guard(train_program, startup):
            with fluid.unique_name.guard():
                data = fluid.data(name='X', shape=[None, 1], dtype='float32')
                hidden = fluid.layers.fc(input=data, size=10)
                loss = fluid.layers.mean(hidden)

                optimizer = paddle.optimizer.SGD(learning_rate=SGD_LR)
                lookahead = paddle.incubate.optimizer.LookAhead(
                    optimizer, alpha=LOOKAHEAD_ALPHA, k=LOOKAHEAD_K)
                lookahead.minimize(loss)

        exe.run(startup)
        slow_param = None
        fast_param = None
        for i in range(10):
            if (i + 1) % LOOKAHEAD_K == 0:
                slow_param = slow_param + LOOKAHEAD_ALPHA * (fast_param -
                                                             slow_param)
            x = np.random.random(size=(10, 1)).astype('float32')
            latest_b, b_grad = exe.run(program=train_program,
                                       feed={'X': x},
                                       fetch_list=[
                                           'fc_0.b_0',
                                           'fc_0.b_0@GRAD',
                                       ])
            if i == 0:
                slow_param = latest_b
            if (i + 1) % LOOKAHEAD_K == 0:
                self.assertAlmostEqual(
                    slow_param.all(), latest_b.all(), delta=5e-3)
            fast_param = latest_b - SGD_LR * b_grad

W
wanghuancoder 已提交
72
    def func_test_look_ahead_dygraph(self):
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
        BATCH_SIZE = 16
        BATCH_NUM = 4
        EPOCH_NUM = 4

        IMAGE_SIZE = 784
        CLASS_NUM = 10

        # define a random dataset
        class RandomDataset(paddle.io.Dataset):
            def __init__(self, num_samples):
                self.num_samples = num_samples

            def __getitem__(self, idx):
                image = np.random.random([IMAGE_SIZE]).astype('float32')
                label = np.random.randint(0, CLASS_NUM - 1,
                                          (1, )).astype('int64')
                return image, label

            def __len__(self):
                return self.num_samples

        class LinearNet(nn.Layer):
            def __init__(self):
                super(LinearNet, self).__init__()
                self._linear = nn.Linear(IMAGE_SIZE, CLASS_NUM)
                self.bias = self._linear.bias

            @paddle.jit.to_static
            def forward(self, x):
                return self._linear(x)

        def train(layer, loader, loss_fn, opt):
            idx = 0
            slow_param = None
            fast_param = None
            for epoch_id in range(EPOCH_NUM):
                for batch_id, (image, label) in enumerate(loader()):
                    idx += 1
                    out = layer(image)
                    loss = loss_fn(out, label)
                    loss.backward()
114 115
                    fast_param = (
                        layer.bias.numpy() - SGD_LR * layer.bias.grad.numpy())
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
                    opt.step()
                    if idx == 1:
                        slow_param = fast_param
                    if idx % LOOKAHEAD_K == 0:
                        slow_param = slow_param + LOOKAHEAD_ALPHA * (
                            fast_param - slow_param)
                        self.assertAlmostEqual(
                            np.mean(slow_param),
                            np.mean(layer.bias.numpy()),
                            delta=5e-3)
                    opt.clear_grad()

        layer = LinearNet()
        loss_fn = nn.CrossEntropyLoss()
        optimizer = paddle.optimizer.SGD(learning_rate=SGD_LR,
                                         parameters=layer.parameters())
        lookahead = paddle.incubate.optimizer.LookAhead(
            optimizer, alpha=LOOKAHEAD_ALPHA, k=LOOKAHEAD_K)

        # create data loader
        dataset = RandomDataset(BATCH_NUM * BATCH_SIZE)
        loader = paddle.io.DataLoader(
            dataset,
            batch_size=BATCH_SIZE,
            shuffle=True,
            drop_last=True,
            num_workers=2)

        train(layer, loader, loss_fn, lookahead)

W
wanghuancoder 已提交
146 147 148 149 150
    def test_look_ahead_dygraph(self):
        with _test_eager_guard():
            self.func_test_look_ahead_dygraph()
        self.func_test_look_ahead_dygraph()

151 152 153

if __name__ == "__main__":
    unittest.main()