test_layer.py 10.8 KB
Newer Older
Q
qiaolongfei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
# Copyright PaddlePaddle contributors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest

import paddle.v2.activation as activation
import paddle.v2.attr as attr
import paddle.v2.data_type as data_type
import paddle.v2.layer as layer
L
Luo Tao 已提交
20
import paddle.v2.pooling as pooling
Y
Yu Yang 已提交
21
import paddle.v2.networks as networks
Y
Yu Yang 已提交
22
import paddle.v2.evaluator as evaluator
Q
qiaolongfei 已提交
23

L
Luo Tao 已提交
24
pixel = layer.data(name='pixel', type=data_type.dense_vector(128))
Q
qiaolongfei 已提交
25
label = layer.data(name='label', type=data_type.integer_value(10))
26
weight = layer.data(name='weight', type=data_type.dense_vector(1))
Y
Yu Yang 已提交
27 28
combine_weight = layer.data(
    name='weight_combine', type=data_type.dense_vector(10))
Q
qiaolongfei 已提交
29
score = layer.data(name='score', type=data_type.dense_vector(1))
L
Luo Tao 已提交
30

Q
qiaolongfei 已提交
31 32 33 34 35
hidden = layer.fc(input=pixel,
                  size=100,
                  act=activation.Sigmoid(),
                  param_attr=attr.Param(name='hidden'))
inference = layer.fc(input=hidden, size=10, act=activation.Softmax())
L
Luo Tao 已提交
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
conv = layer.img_conv(
    input=pixel,
    filter_size=1,
    filter_size_y=1,
    num_channels=8,
    num_filters=16,
    act=activation.Linear())


class ImageLayerTest(unittest.TestCase):
    def test_conv_layer(self):
        conv_shift = layer.conv_shift(a=pixel, b=score)
        print layer.parse_network(conv, conv_shift)

    def test_pooling_layer(self):
        maxpool = layer.img_pool(
            input=conv,
            pool_size=2,
            num_channels=16,
            padding=1,
            pool_type=pooling.Max())
        spp = layer.spp(input=conv,
                        pyramid_height=2,
                        num_channels=16,
                        pool_type=pooling.Max())
        maxout = layer.maxout(input=conv, num_channels=16, groups=4)
D
dangqingqing 已提交
62
        print layer.parse_network([maxpool, spp, maxout])
L
Luo Tao 已提交
63 64 65 66 67

    def test_norm_layer(self):
        norm1 = layer.img_cmrnorm(input=conv, size=5)
        norm2 = layer.batch_norm(input=conv)
        norm3 = layer.sum_to_one_norm(input=conv)
D
dangqingqing 已提交
68
        print layer.parse_network([norm1, norm2, norm3])
L
Luo Tao 已提交
69 70 71 72


class AggregateLayerTest(unittest.TestCase):
    def test_aggregate_layer(self):
Y
Yu Yang 已提交
73
        pool = layer.pooling(
L
Luo Tao 已提交
74 75
            input=pixel,
            pooling_type=pooling.Avg(),
L
Luo Tao 已提交
76
            agg_level=layer.AggregateLevel.TO_SEQUENCE)
L
Luo Tao 已提交
77 78 79 80
        last_seq = layer.last_seq(input=pixel)
        first_seq = layer.first_seq(input=pixel)
        concat = layer.concat(input=[last_seq, first_seq])
        seq_concat = layer.seq_concat(a=last_seq, b=first_seq)
D
dangqingqing 已提交
81 82
        print layer.parse_network(
            [pool, last_seq, first_seq, concat, seq_concat])
L
Luo Tao 已提交
83 84 85 86 87


class MathLayerTest(unittest.TestCase):
    def test_math_layer(self):
        addto = layer.addto(input=[pixel, pixel])
Y
Yu Yang 已提交
88 89
        linear_comb = layer.linear_comb(
            weights=combine_weight, vectors=hidden, size=10)
L
Luo Tao 已提交
90 91 92 93 94 95 96 97 98
        interpolation = layer.interpolation(
            input=[hidden, hidden], weight=score)
        bilinear = layer.bilinear_interp(input=conv, out_size_x=4, out_size_y=4)
        power = layer.power(input=pixel, weight=score)
        scaling = layer.scaling(input=pixel, weight=score)
        slope = layer.slope_intercept(input=pixel)
        tensor = layer.tensor(a=pixel, b=pixel, size=1000)
        cos_sim = layer.cos_sim(a=pixel, b=pixel)
        trans = layer.trans(input=tensor)
D
dangqingqing 已提交
99 100 101 102
        print layer.parse_network([
            addto, linear_comb, interpolation, power, scaling, slope, tensor,
            cos_sim, trans
        ])
L
Luo Tao 已提交
103 104 105 106 107 108 109 110 111 112 113 114 115


class ReshapeLayerTest(unittest.TestCase):
    def test_reshape_layer(self):
        block_expand = layer.block_expand(
            input=conv, num_channels=4, stride_x=1, block_x=1)
        expand = layer.expand(
            input=weight,
            expand_as=pixel,
            expand_level=layer.ExpandLevel.FROM_TIMESTEP)
        repeat = layer.repeat(input=pixel, num_repeats=4)
        reshape = layer.seq_reshape(input=pixel, reshape_size=4)
        rotate = layer.rotate(input=pixel, height=16, width=49)
D
dangqingqing 已提交
116 117
        print layer.parse_network(
            [block_expand, expand, repeat, reshape, rotate])
L
Luo Tao 已提交
118 119 120 121 122 123 124 125


class RecurrentLayerTest(unittest.TestCase):
    def test_recurrent_layer(self):
        word = layer.data(name='word', type=data_type.integer_value(12))
        recurrent = layer.recurrent(input=word)
        lstm = layer.lstmemory(input=word)
        gru = layer.grumemory(input=word)
D
dangqingqing 已提交
126
        print layer.parse_network([recurrent, lstm, gru])
Q
qiaolongfei 已提交
127 128 129 130 131 132 133 134 135 136


class CostLayerTest(unittest.TestCase):
    def test_cost_layer(self):
        cost1 = layer.classification_cost(input=inference, label=label)
        cost2 = layer.classification_cost(
            input=inference, label=label, weight=weight)
        cost3 = layer.cross_entropy_cost(input=inference, label=label)
        cost4 = layer.cross_entropy_with_selfnorm_cost(
            input=inference, label=label)
L
Luo Tao 已提交
137 138
        cost5 = layer.mse_cost(input=inference, label=label)
        cost6 = layer.mse_cost(input=inference, label=label, weight=weight)
Q
qiaolongfei 已提交
139 140 141 142 143 144 145
        cost7 = layer.multi_binary_label_cross_entropy_cost(
            input=inference, label=label)
        cost8 = layer.rank_cost(left=score, right=score, label=score)
        cost9 = layer.lambda_cost(input=inference, score=score)
        cost10 = layer.sum_cost(input=inference)
        cost11 = layer.huber_cost(input=score, label=label)

D
dangqingqing 已提交
146 147 148 149
        print layer.parse_network([cost1, cost2])
        print layer.parse_network([cost3, cost4])
        print layer.parse_network([cost5, cost6])
        print layer.parse_network([cost7, cost8, cost9, cost10, cost11])
L
Luo Tao 已提交
150 151 152 153 154 155 156 157

        crf = layer.crf(input=inference, label=label)
        crf_decoding = layer.crf_decoding(input=inference, size=3)
        ctc = layer.ctc(input=inference, label=label)
        warp_ctc = layer.warp_ctc(input=pixel, label=label)
        nce = layer.nce(input=inference, label=label, num_classes=3)
        hsigmoid = layer.hsigmoid(input=inference, label=label, num_classes=3)

D
dangqingqing 已提交
158 159
        print layer.parse_network(
            [crf, crf_decoding, ctc, warp_ctc, nce, hsigmoid])
L
Luo Tao 已提交
160 161 162 163 164 165 166


class OtherLayerTest(unittest.TestCase):
    def test_sampling_layer(self):
        maxid = layer.max_id(input=inference)
        sampling_id = layer.sampling_id(input=inference)
        eos = layer.eos(input=maxid, eos_id=5)
D
dangqingqing 已提交
167
        print layer.parse_network([maxid, sampling_id, eos])
L
Luo Tao 已提交
168 169 170 171

    def test_slicing_joining_layer(self):
        pad = layer.pad(input=conv, pad_c=[2, 3], pad_h=[1, 2], pad_w=[3, 1])
        print layer.parse_network(pad)
Q
qiaolongfei 已提交
172 173


L
Luo Tao 已提交
174
class ProjOpTest(unittest.TestCase):
D
dangqingqing 已提交
175 176 177 178
    def test_projection(self):
        input = layer.data(name='data', type=data_type.dense_vector(784))
        word = layer.data(
            name='word', type=data_type.integer_value_sequence(10000))
D
dangqingqing 已提交
179 180
        fc0 = layer.fc(input=input, size=100, act=activation.Sigmoid())
        fc1 = layer.fc(input=input, size=200, act=activation.Sigmoid())
D
dangqingqing 已提交
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
        mixed0 = layer.mixed(
            size=256,
            input=[
                layer.full_matrix_projection(input=fc0),
                layer.full_matrix_projection(input=fc1)
            ])
        with layer.mixed(size=200) as mixed1:
            mixed1 += layer.full_matrix_projection(input=fc0)
            mixed1 += layer.identity_projection(input=fc1)

        table = layer.table_projection(input=word)
        emb0 = layer.mixed(size=512, input=table)
        with layer.mixed(size=512) as emb1:
            emb1 += table

        scale = layer.scaling_projection(input=fc0)
        scale0 = layer.mixed(size=100, input=scale)
        with layer.mixed(size=100) as scale1:
            scale1 += scale

        dotmul = layer.dotmul_projection(input=fc0)
        dotmul0 = layer.mixed(size=100, input=dotmul)
        with layer.mixed(size=100) as dotmul1:
            dotmul1 += dotmul

        context = layer.context_projection(input=fc0, context_len=5)
        context0 = layer.mixed(size=100, input=context)
        with layer.mixed(size=100) as context1:
            context1 += context

        conv = layer.conv_projection(
            input=input,
            filter_size=1,
            num_channels=1,
            num_filters=128,
            stride=1,
            padding=0)
        conv0 = layer.mixed(input=conv, bias_attr=True)
        with layer.mixed(bias_attr=True) as conv1:
            conv1 += conv

        print layer.parse_network(mixed0)
        print layer.parse_network(mixed1)
        print layer.parse_network(emb0)
        print layer.parse_network(emb1)
        print layer.parse_network(scale0)
        print layer.parse_network(scale1)
        print layer.parse_network(dotmul0)
        print layer.parse_network(dotmul1)
        print layer.parse_network(conv0)
        print layer.parse_network(conv1)

    def test_operator(self):
        ipt0 = layer.data(name='data', type=data_type.dense_vector(784))
        ipt1 = layer.data(name='word', type=data_type.dense_vector(128))
D
dangqingqing 已提交
236 237
        fc0 = layer.fc(input=ipt0, size=100, act=activation.Sigmoid())
        fc1 = layer.fc(input=ipt0, size=100, act=activation.Sigmoid())
D
dangqingqing 已提交
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260

        dotmul_op = layer.dotmul_operator(a=fc0, b=fc1)
        dotmul0 = layer.mixed(input=dotmul_op)
        with layer.mixed() as dotmul1:
            dotmul1 += dotmul_op

        conv = layer.conv_operator(
            img=ipt0,
            filter=ipt1,
            filter_size=1,
            num_channels=1,
            num_filters=128,
            stride=1,
            padding=0)
        conv0 = layer.mixed(input=conv)
        with layer.mixed() as conv1:
            conv1 += conv

        print layer.parse_network(dotmul0)
        print layer.parse_network(dotmul1)
        print layer.parse_network(conv0)
        print layer.parse_network(conv1)

Q
qiaolongfei 已提交
261

Y
Yu Yang 已提交
262 263 264 265 266 267 268 269
class NetworkTests(unittest.TestCase):
    def test_vgg(self):
        img = layer.data(name='pixel', type=data_type.dense_vector(784))
        vgg_out = networks.small_vgg(
            input_image=img, num_channels=1, num_classes=2)
        print layer.parse_network(vgg_out)


Y
Yu Yang 已提交
270 271 272 273 274 275 276 277 278 279
class EvaluatorTest(unittest.TestCase):
    def test_evaluator(self):
        img = layer.data(name='pixel', type=data_type.dense_vector(784))
        output = layer.fc(input=img,
                          size=10,
                          act=activation.Softmax(),
                          name='fc_here')
        lbl = layer.data(name='label', type=data_type.integer_value(10))
        cost = layer.cross_entropy_cost(input=output, label=lbl)

Y
Yu Yang 已提交
280
        evaluator.classification_error(input=output, label=lbl)
Y
Yu Yang 已提交
281 282 283 284
        print layer.parse_network(cost)
        print layer.parse_network(output)


Q
qiaolongfei 已提交
285 286
if __name__ == '__main__':
    unittest.main()