“c018ea8040c7d3cb14ea78ec96491254029703c2”上不存在“source/dnode/mgmt/implement/src/dndTransport.c”
compute_primitives_xpu2.h 12.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once
16
#include "paddle/phi/common/float16.h"
17 18 19
#include "xpu/kernel/cluster_header.h"
#include "xpu/kernel/debug.h"
#include "xpu/kernel/math.h"
20
#include "xpu/kernel/simd_header.h"
21

22
namespace phi {
23
namespace kps {
24 25 26 27 28 29 30 31 32 33 34 35 36
namespace details {

// kGlobalMode: block reduce, each block gets an output;
// kLocalMode: thread reduce, each thread gets an output;
enum ReduceMode { kGlobalMode, kLocalMode };

template <typename T>
class MPTypeTrait {
 public:
  using Type = T;
};

template <>
37
class MPTypeTrait<phi::dtype::float16> {
38 39 40 41 42 43 44 45 46 47 48 49 50
 public:
  using Type = float;
};

static inline __device__ void sync_all() {
  __asm__ __volatile__(
      "sync_local\t\n"
      "csr_set csr3, %0\t\n"
      "sync_group csr3" ::"r"(-1));
}

#define ncores 64
template <typename T, typename OpFunc, int VecSize>
51
__device__ void BlockXReduce(T* out, const T* data, OpFunc reducer) {
52 53 54 55 56 57 58 59
  __shared__ T sum_array[ncores * VecSize];
  int core_idx = core_id() * VecSize;
  mfence();
  sync_all();

#pragma unroll
  for (int i = 0; i < VecSize; i++) {
    mfence();
60
    sum_array[i * ncores + core_idx] = data[i];
61 62 63 64 65
    mfence();
  }
  sync_all();
#pragma unroll
  for (int i = 0; i < VecSize; i++) {
66
    T start = data[i * ncores];
67
#pragma unroll
68
    for (int j = 1; j < ncores; j++) {
69
      mfence();
70
      T tmp = sum_array[i * ncores + j];
71
      mfence();
72
      start = reducer(start, tmp);
73 74
      mfence();
    }
75
    out[i] = start;
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
  }
  sync_all();
}
#undef ncores

}  // namespace details

/**
 * @brief Perform unary calculation according to OpFunc. Shape of input and
 * output are the same.
 *
 * @template paraments
 * InT: The data type of in.
 * OutT: The data type of out.
 * NX: The number of data columns loaded by each thread.
 * NY: The number of data rows loaded by each thread.
 * BlockSize: Identifies the current device thread index method. For xpu,
 * core_id() is used as the index.
 * OpFunc: Compute functor which has an operator() as following:
 *     template <typename InT, typename OutT>
 *     struct XxxFunctor {
 *       HOSTDEVICE OutT operator()(const InT& a) const {
 *         return ...;
 *       }
 *     };
 *
 * @param:
 * out: The register pointer of out, the size is NX * NY.
 * in: The register pointer of in, the size is NX * NY.
 * compute: Compute function which was declared like OpFunc<InT, OutT>().
 */
107 108 109 110 111
template <typename InT,
          typename OutT,
          int NX,
          int NY,
          int BlockSize,
112
          class OpFunc>
113 114
__device__ __forceinline__ void ElementwiseUnary(OutT* out,
                                                 const InT* in,
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
                                                 OpFunc compute) {
#pragma unroll
  for (int idx = 0; idx < NX * NY; idx++) {
    out[idx] = static_cast<OutT>(compute(in[idx]));
  }
}

/**
 * @brief Binary calculation according to OpFunc. Shape of The input and output
 * are the same.
 *
 * @template paraments
 * InT: The data type of in1 and in2.
 * OutT: The data type of out.
 * NX: The number of data columns computed by each thread.
 * NY: The number of data rows computed by each thread.
 * BlockSize: Identifies the current device thread index method. For xpu,
 * core_id() is used as the index.
 * OpFunc: Compute functor which has an operator() as following:
 *     template <typename InT>
 *     struct XxxFunctor {
 *       HOSTDEVICE InT operator()(const InT& a, const InT& b) const {
 *         return ...;
 *       }
 *     };
 *
 * @param:
 * out: The register pointer of out, the size is NX * NY.
 * in1: The register pointer of fist input, size is NX * NY.
 * in2: The register pointer of second input, size is NX * NY.
 * compute: Compute function which was declared like OpFunc<InT>().
 */
147 148 149 150 151
template <typename InT,
          typename OutT,
          int NX,
          int NY,
          int BlockSize,
152
          class OpFunc>
153 154
__device__ __forceinline__ void ElementwiseBinary(OutT* out,
                                                  const InT* in1,
155 156 157 158 159 160 161 162
                                                  const InT* in2,
                                                  OpFunc compute) {
#pragma unroll
  for (int idx = 0; idx < NX * NY; ++idx) {
    out[idx] = static_cast<OutT>(compute(in1[idx], in2[idx]));
  }
}

163 164 165 166 167 168 169 170 171 172 173 174 175
template <typename InT,
          typename OutT,
          int NX,
          int NY,
          int BlockSize,
          class OpFunc>
__device__ __forceinline__ void ElementwiseBinary(
    OutT* out, const InT* in1, const InT* in2, OpFunc compute, int read_lens) {
  for (int idx = 0; idx < read_lens; ++idx) {
    out[idx] = static_cast<OutT>(compute(in1[idx], in2[idx]));
  }
}

176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
/**
 * @brief Ternary calculation according to OpFunc. Shape of input and output
 * are the same.
 *
 * @template paraments
 * InT: The data type of in1 and in2.
 * OutT: The data type of out.
 * NX: The number of data columns loaded by each thread.
 * NY: The number of data rows loaded by each thread.
 * BlockSize: Identifies the current device thread index method. For xpu,
 * core_id() is used as the index.
 * OpFunc: Compute functor which has an operator() as following
 *     template <typename InT>
 *     struct XxxFunctor {
 *       HOSTDEVICE InT operator()(const InT& a, const InT& b, const InT& c)
 * const {
 *         return ...;
 *       }
 *     };
 *
 * @param
 * out: The register pointer of out, the size is NX * NY.
 * in1: The register pointer of fist input, size is NX * NY.
 * in2: The register pointer of second input, size is NX * NY.
 * in3: The register pointer of third input, size is NX * NY.
 * compute: Compute function which was declared like OpFunc<InT>().
 */
203 204 205 206 207
template <typename InT,
          typename OutT,
          int NX,
          int NY,
          int BlockSize,
208
          class OpFunc>
209 210
__device__ __forceinline__ void ElementwiseTernary(
    OutT* out, const InT* in1, const InT* in2, const InT* in3, OpFunc compute) {
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
#pragma unroll
  for (int idx = 0; idx < NX * NY; ++idx) {
    out[idx] = static_cast<OutT>(compute(in1[idx], in2[idx], in3[idx]));
  }
}

/**
 * @brief Multivariate calculation according to OpFunc. Shape of inputs and
 * output are the same.
 *
 * @template paraments
 * InT: The data type of in1, in2 and in3.
 * OutT: The data type of out.
 * NX: The number of data columns loaded by each thread.
 * NY: The number of data rows loaded by each thread.
 * BlockSize: Identifies the current device thread index method. For xpu,
 * core_id() is used as the index.
 * Arity: The size of ins
 * OpFunc: Compute functor which has an operator() as following:
 *     template <typename InT>
 *     struct XxxFunctor {
 *       HOSTDEVICE InT operator()(const InT* args) const {
 *         return ...;
 *       }
 *     };
 *
 * @param
 * out: The register pointer of out, the size is NX * NY.
 * ins: A pointers of array consisting of multiple inputs.
 * compute: Compute function which was declared like OpFunc<InT>().
 */
242 243 244 245 246 247
template <typename InT,
          typename OutT,
          int NX,
          int NY,
          int BlockSize,
          int Arity,
248
          class OpFunc>
249 250
__device__ __forceinline__ void ElementwiseAny(OutT* out,
                                               InT (*ins)[NX * NY],
251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
                                               OpFunc compute) {
  __local__ InT args[Arity];
#pragma unroll
  for (int idx = 0; idx < NX * NY; ++idx) {
#pragma unroll
    for (int j = 0; j < Arity; ++j) {
      args[j] = ins[j][idx];
    }
    out[idx] = static_cast<OutT>(compute(args));
  }
}

/**
 * @brief Binary calculation according to OpFunc. The shape of in1 and in2 are
 * different. When in1's shape is [1, NX], in2's shape is [NY, NX], then
 * output's shape is [NY, NX].
 *
 * @template paraments
 * InT: The data type of in1 and in2.
 * OutT: The data type of out.
 * NX: The number of data columns loaded by each thread.
 * NY: The number of data rows loaded by each thread.
 * BlockSize: Identifies the current device thread index method. For xpu,
 * core_id() is used as the index.
 * OpFunc: Compute functor which has an operator() as following
 *     template <typename InT, typename OutT>
 *     struct XxxFunctor {
 *       HOSTDEVICE OutT operator()(const InT& a, const InT& b) const {
 *         return ...;
 *       }
 *     };
 *
 * @param
 * out: The register pointer of out, the size is NX * NY.
 * in1: The register pointer of fist input, size is NX * 1.
 * in2: The register pointer of second input, size is NX * NY.
 * compute: Compute function which was declared like OpFunc<InT, OutT>().
 */
289 290 291 292 293
template <typename InT,
          typename OutT,
          int NX,
          int NY,
          int BlockSize,
294
          class OpFunc>
295 296 297 298
__device__ __forceinline__ void CycleBinary(OutT* out,
                                            const InT* in1,
                                            const InT* in2,
                                            OpFunc compute) {
299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
#pragma unroll
  for (int idx = 0; idx < NX; idx++) {
#pragma unroll
    for (int idy = 0; idy < NY; idy++) {
      out[idx + idy * NX] =
          static_cast<OutT>(compute(in1[idx], in2[idx + idy * NX]));
    }
  }
}

/**
 * @brief The Reduce provides collective methods for computing a parallel
 * reduction of items partitioned across a CUDA block and intra thread. When
 * ReduceMode == kLocalMode, thread reduce along nx. When ReduceMode ==
 * kGlobalMode, use shared memory to reduce between threads.
 *
 * @template paraments
 * T: The type of data.
 * NX: The number of data continuously loaded by each thread.
 * NY: The number of data rows loaded by each thread, only NY = 1 was supported.
 * BlockSize: Identifies the current device thread index method. For xpu,
 * core_id() is used as the index.
 * ReduceFunctor: Compute functor which has an operator() as following
 *     template <typename InT>
 *     struct ReduceFunctor {
 *       HOSTDEVICE InT operator()(const InT& a, const InT& b) const {
 *         return ...;
 *       }
 *     };
 * ReduceMode: Reduce mode, can be kLocalMode, kGlobalMode.
 *
 * @param
 * out: The register pointer of out, the size is NX * NY.
 * in: The register pointer of in, the size is NX * NY.
 * reducer: Compute function which was declared like ReduceFunctor<InT>().
 * reduce_last_dim: if the last dim gets involved in reduction.
 */
336 337 338 339 340
template <typename T,
          int NX,
          int NY,
          int BlockSize,
          class ReduceFunctor,
341
          details::ReduceMode Mode>
342 343
__device__ __forceinline__ void Reduce(T* out,
                                       const T* in,
344 345
                                       ReduceFunctor reducer,
                                       bool reduce_last_dim) {
346
  if (Mode == details::kGlobalMode) {
N
niuliling123 已提交
347
    if (reduce_last_dim) {
348
#pragma unroll
N
niuliling123 已提交
349
      for (int i = 0; i < NY * NX; i++) {  // reduce along blockDim.x
350
        details::BlockXReduce<T, ReduceFunctor, 1>(&out[i], &in[i], reducer);
351 352 353 354 355 356 357 358 359 360 361 362 363
      }
    }
  } else {  // else  kLocalMode
#pragma unroll
    for (int i = 0; i < NY; ++i) {
#pragma unroll
      for (int j = 0; j < NX; ++j) {
        out[i] = reducer(out[i], in[i * NX + j]);
      }
    }
  }
}

364
/*
365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
 * @brief Fill register with a constant according to OpFunc
 *
 * @template paraments
 * InT: The data type of in1 and in2.
 * OutT: The data type of out.
 * NX: The number of data columns loaded by each thread.
 * NY: The number of data rows loaded by each thread.
 * BlockSize: Identifies the current device thread index method. For xpu,
 * core_id() is used as the index.
 * OpFunc: Compute functor which has an operator() as following
 *     template <typename InT>
 *     struct XxxFunctor {
 *       HOSTDEVICE InT operator()()
 * const {
 *         return a;
 *       }
 *     };
 *
 * @param
 * out: The register pointer of out, the size is NX * NY.
 * compute: Compute function which was declared like OpFunc<InT>().
 */
387 388 389 390 391 392 393 394 395 396 397 398 399
template <typename InT,
          typename OutT,
          int NX,
          int NY,
          int BlockSize,
          class OpFunc>
__device__ __forceinline__ void ElementwiseConstant(OutT* out, OpFunc compute) {
#pragma unroll
  for (int idx = 0; idx < NX * NY; idx++) {
    out[idx] = static_cast<OutT>(compute());
  }
}

400
}  // namespace kps
401
}  // namespace phi