TrainingAlgorithmOp.cu 6.1 KB
Newer Older
H
hedaoyuan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
/**
 * TrainingAlgorithmOp.cu
 *
 * Author: hedaoyuan (hedaoyuan@baidu.com)
 * Created on: 2016-06-29
 *
 * Copyright (c) Baidu.com, Inc. All Rights Reserved
 *
 */

#include "paddle/utils/Logging.h"
#include "BaseMatrix.h"
#include "TrainingAlgorithmOp.h"

namespace paddle {

void sparseMomentumApply(BaseMatrix& value,
                         BaseMatrix& grad,
                         BaseMatrix& momU,
                         BaseMatrix& momV,
                         real alpha,
                         real beta,
                         real gamma,
                         real tau,
                         real learningRate) {
  /**
   * \alpha_t = \alpha_{t-1} / k
   * \beta_t = \beta_{t-1} / (1 + \lambda\gamma_t)
   * u_t = u_{t-1} - \alpha_t \gamma_t g_t
   * v_t = v_{t-1} + \tau_{t-1} \alpha_t \gamma_t g_t
   * \tau_t = \tau_{t-1} + \beta_t / \alpha_t
   */
  momU -= (alpha * gamma * learningRate) * grad;
  momV += (tau * alpha * gamma * learningRate) * grad;
  value = (tau / beta + (real)1 / alpha) * momU + ((real)1 / beta) * momV;
}

void adadeltaApply(BaseMatrix& value,
                   BaseMatrix& grad,
                   BaseMatrix& mom,
                   BaseMatrix& accum,
                   BaseMatrix& accum_update,
                   BaseMatrix& lr,
                   real rou,
                   real epsilon,
                   real learningRate,
                   real momentum,
                   real decayRate) {
  // E(g_t^2) = \rou * E(g_{t-1}^2) + (1-\rou) * g^2
  accum = rou * accum + ((real)1 - rou) * grad.square();

  // learn_rate: sqrt(( E(dx_{t-1}^2) + epsilon ) / ( E(g_t^2) + epsilon ))
  lr = ((accum_update + epsilon) / (accum + epsilon)).sqrt();

  // E(dx_t^2) = \rou * E(dx_{t-1}^2) + (1-\rou) * (-g*learn_rate)^2
  accum_update = rou * accum_update + ((real)1 - rou) * (grad * lr).square();

  mom = mom * momentum - learningRate * lr * (grad + value * decayRate);
  value += mom;
}

void adagradApply(BaseMatrix& value,
                  BaseMatrix& grad,
                  BaseMatrix& mom,
                  BaseMatrix& accum_buffer,
                  BaseMatrix& accum,
                  BaseMatrix& lr,
                  real epsilon,
                  real learningRate,
                  real momentum,
                  real decayRate) {
  accum += grad.square();
  lr = (accum_buffer + accum + epsilon).sqrt().reciprocal();
  mom = mom * momentum - learningRate * lr * (grad + value * decayRate);
  value += mom;
}

void rmspropApply(BaseMatrix& value,
                  BaseMatrix& grad,
                  BaseMatrix& mom,
                  BaseMatrix& g,
                  BaseMatrix& f,
                  BaseMatrix& lr,
                  real accumulatedRou,
                  real rou,
                  real epsilon,
                  real learningRate,
                  real momentum,
                  real decayRate,
                  bool firstTime) {
  // E(g_t^2) = \rou * E(g_{t-1}^2) + (1-\rou) * g^2
  // For the first time update, make the sum be the current square
  // so that the initial estimation of E(g_t^2) will not be too small.
  if (firstTime) {
    g = accumulatedRou * g + grad.square();
  } else {
    g = accumulatedRou * g + ((real)1 - rou) * grad.square();
  }

  // E(f_t) = \rou * E(f_{t-1}) + (1-\rou) * g
  f = accumulatedRou * f + ((real)1 - rou) * grad;

  // learn_rate = 1/sqrt( ( E(g_t^2) - (E(f_t))^2 + epsilon )
  // Basiclly if the sign of the gradient changes more often,
  // the learning rate will be decreased.
  lr = (g - f.square() + epsilon).sqrt().reciprocal();

  mom = mom * momentum - learningRate * lr * (grad + value * decayRate);
  value += mom;
}

void decayedAdagradApply(BaseMatrix& value,
                         BaseMatrix& grad,
                         BaseMatrix& mom,
                         BaseMatrix& accum,
                         BaseMatrix& lr,
                         real accumulatedRou,
                         real rou,
                         real epsilon,
                         real learningRate,
                         real momentum,
                         real decayRate,
                         bool firstTime) {
  // E(g_t^2) = \rou * E(g_{t-1}^2) + (1-\rou) * g^2
  // For the first time update, make the sum be the current square
  // so that the initial estimation of E(g_t^2) will not be too small.
  if (firstTime) {
    accum = accumulatedRou * accum + grad.square();
  } else {
    accum = accumulatedRou * accum + ((real)1 - rou) * grad.square();
  }

  // learn_rate = 1/sqrt( ( E(g_t^2) + epsilon )
  // Basiclly if the bigger the magnitude gradient is,
  // the smaller the learning rate will be.
  lr = (accum + epsilon).sqrt().reciprocal();

  mom = mom * momentum - learningRate * lr * (grad + value * decayRate);
  value += mom;
}

void adamApply(BaseMatrix& value,
               BaseMatrix& grad,
               BaseMatrix& mom,  // firse moment
               BaseMatrix& v,    // second moment
               real beta1,
               real beta2,
               real beta1_power,
               real beta2_power,
               real epsilon,
               real learningRate) {
  real alpha = learningRate *
      std::sqrt((real)1 - beta2_power) / ((real)1 - beta1_power);

  // m_t = \beta_1 * m_{t-1} + (1-\beta_1)* g_t;
  mom = beta1 * mom + ((real)1 - beta1) * grad;

  // v_t = \beta_2 * v_{t-1} + (1-\beta_2)* g_{t-1}^2
  v = beta2 * v + ((real)1 - beta2) * grad.square();

  value -=  (mom * alpha) / (v.sqrt() + epsilon);
}

void adamaxApply(BaseMatrix& value,
                 BaseMatrix& grad,
                 BaseMatrix& mom,  // firse moment
                 BaseMatrix& u,    // weighted infinity norm
                 real beta1,
                 real beta2,
                 int64_t step,
                 real alpha) {
  // m_t = \beta_1 * m_{t-1} + (1-\beta_1)* g_t;
  mom = beta1 * mom + ((real)1 - beta1) * grad;

  // u_t = max(\beta_2*u_{t-1}, abs(g_t))
  u = (beta2 * u > grad.abs()).condition(beta2 * u, grad.abs());

  // \theta_t = \theta_{t-1} - (\alpha/(1-\beta_1^t))*m_t/u_t
  value -= (alpha / ((real)1 - (real)std::pow(beta1, step))) * (mom / u);
}

}  // namespace paddle