test_IntermediateLayerGetter.py 2.9 KB
Newer Older
R
Ryan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import random
import unittest

import paddle
from paddle.vision.models._utils import IntermediateLayerGetter


class TestBase:
    def setUp(self):

        self.init_model()
        self.model.eval()

        self.layer_names = [
            (order, name)
            for order, (name, _) in enumerate(self.model.named_children())
        ]
        # choose two layer children of model randomly
        self.start, self.end = sorted(
            random.sample(self.layer_names, 2), key=lambda x: x[0]
        )

        self.return_layers_dic = {self.start[1]: "feat1", self.end[1]: "feat2"}
        self.new_model = IntermediateLayerGetter(
            self.model, self.return_layers_dic
        )

    def init_model(self):
        self.model = None

    @paddle.no_grad()
    def test_inter_result(self):

        inp = paddle.randn([1, 3, 80, 80])
        inter_oup = self.new_model(inp)

        for layer_name, layer in self.model.named_children():

            if (isinstance(layer, paddle.nn.Linear) and inp.ndim == 4) or (
                len(layer.sublayers()) > 0
                and isinstance(layer.sublayers()[0], paddle.nn.Linear)
                and inp.ndim == 4
            ):
                inp = paddle.flatten(inp, 1)

            inp = layer(inp)
            if layer_name in self.return_layers_dic:
                feat_name = self.return_layers_dic[layer_name]
                self.assertTrue((inter_oup[feat_name] == inp).all())


class TestIntermediateLayerGetterResNet18(TestBase, unittest.TestCase):
    def init_model(self):
        self.model = paddle.vision.models.resnet18(pretrained=False)


class TestIntermediateLayerGetterDenseNet121(TestBase, unittest.TestCase):
    def init_model(self):
        self.model = paddle.vision.models.densenet121(pretrained=False)


class TestIntermediateLayerGetterVGG11(TestBase, unittest.TestCase):
    def init_model(self):
        self.model = paddle.vision.models.vgg11(pretrained=False)


class TestIntermediateLayerGetterMobileNetV3Small(TestBase, unittest.TestCase):
    def init_model(self):
        self.model = paddle.vision.models.MobileNetV3Small()


class TestIntermediateLayerGetterShuffleNetV2(TestBase, unittest.TestCase):
    def init_model(self):
        self.model = paddle.vision.models.shufflenet_v2_x0_25()


if __name__ == "__main__":
    unittest.main()