float16_test.cu 10.9 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
K
Kexin Zhao 已提交
2 3 4 5 6 7 8 9 10 11
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

12
#include "paddle/fluid/platform/float16.h"
K
Kexin Zhao 已提交
13

14
#include <glog/logging.h>
K
Kexin Zhao 已提交
15
#include <gtest/gtest.h>
16 17
#include <bitset>
#include <iostream>
K
Kexin Zhao 已提交
18

K
kexinzhao 已提交
19 20
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/tensor_util.h"
K
Kexin Zhao 已提交
21

22 23 24
#define ARITHMETIC_KERNEL(op_type, sign)                                 \
  __global__ void op_type(const half* in1, const half* in2, half* out) { \
    out[0] = in1[0] sign in2[0];                                         \
K
Kexin Zhao 已提交
25 26
  }

27 28
#define COMPOUND_KERNEL(op_type, sign) \
  __global__ void op_type(half* in1, const half* in2) { in1[0] sign in2[0]; }
K
Kexin Zhao 已提交
29

30 31 32
#define COMPARISON_KERNEL(op_type, sign)                                 \
  __global__ void op_type(const half* in1, const half* in2, bool* out) { \
    out[0] = in1[0] sign in2[0];                                         \
K
Kexin Zhao 已提交
33 34 35 36 37
  }

#define ARITHMETIC_KERNEL_LAUNCH(op_type)                     \
  void Test##op_type(float v_in1, float v_in2, float v_out) { \
    LOG(INFO) << "Test " << #op_type << " on GPU!";           \
38 39 40
    half *in1, *in2, *out;                                    \
    half *d_in1, *d_in2, *d_out;                              \
    int size = sizeof(half);                                  \
41 42 43 44 45 46
    cudaMalloc(reinterpret_cast<void**>(&d_in1), size);       \
    cudaMalloc(reinterpret_cast<void**>(&d_in2), size);       \
    cudaMalloc(reinterpret_cast<void**>(&d_out), size);       \
    in1 = reinterpret_cast<half*>(malloc(size));              \
    in2 = reinterpret_cast<half*>(malloc(size));              \
    out = reinterpret_cast<half*>(malloc(size));              \
47 48
    in1[0] = half(float16(v_in1));                            \
    in2[0] = half(float16(v_in2));                            \
K
Kexin Zhao 已提交
49 50 51 52
    cudaMemcpy(d_in1, in1, size, cudaMemcpyHostToDevice);     \
    cudaMemcpy(d_in2, in2, size, cudaMemcpyHostToDevice);     \
    op_type<<<1, 1>>>(d_in1, d_in2, d_out);                   \
    cudaMemcpy(out, d_out, size, cudaMemcpyDeviceToHost);     \
53
    EXPECT_EQ(static_cast<float>(float16(out[0])), v_out);    \
K
Kexin Zhao 已提交
54 55 56 57 58 59 60 61 62 63 64
    free(in1);                                                \
    free(in2);                                                \
    free(out);                                                \
    cudaFree(d_in1);                                          \
    cudaFree(d_in2);                                          \
    cudaFree(d_out);                                          \
  }

#define COMPOUND_KERNEL_LAUNCH(op_type)                       \
  void Test##op_type(float v_in1, float v_in2, float v_out) { \
    LOG(INFO) << "Test " << #op_type << " on GPU!";           \
65 66 67
    half *in1, *in2;                                          \
    half *d_in1, *d_in2;                                      \
    int size = sizeof(half);                                  \
68 69 70 71
    cudaMalloc(reinterpret_cast<void**>(&d_in1), size);       \
    cudaMalloc(reinterpret_cast<void**>(&d_in2), size);       \
    in1 = reinterpret_cast<half*>(malloc(size));              \
    in2 = reinterpret_cast<half*>(malloc(size));              \
72 73
    in1[0] = half(float16(v_in1));                            \
    in2[0] = half(float16(v_in2));                            \
K
Kexin Zhao 已提交
74 75 76 77
    cudaMemcpy(d_in1, in1, size, cudaMemcpyHostToDevice);     \
    cudaMemcpy(d_in2, in2, size, cudaMemcpyHostToDevice);     \
    op_type<<<1, 1>>>(d_in1, d_in2);                          \
    cudaMemcpy(in1, d_in1, size, cudaMemcpyDeviceToHost);     \
78
    EXPECT_EQ(static_cast<float>(float16(in1[0])), v_out);    \
K
Kexin Zhao 已提交
79 80 81 82 83 84 85 86 87
    free(in1);                                                \
    free(in2);                                                \
    cudaFree(d_in1);                                          \
    cudaFree(d_in2);                                          \
  }

#define COMPARISON_KERNEL_LAUNCH(op_type)                    \
  void Test##op_type(float v_in1, float v_in2, bool v_out) { \
    LOG(INFO) << "Test " << #op_type << " on GPU!";          \
88 89
    half *in1, *in2;                                         \
    half *d_in1, *d_in2;                                     \
K
Kexin Zhao 已提交
90
    bool *out, *d_out;                                       \
91
    int size = sizeof(half);                                 \
92 93 94 95 96 97
    cudaMalloc(reinterpret_cast<void**>(&d_in1), size);      \
    cudaMalloc(reinterpret_cast<void**>(&d_in2), size);      \
    cudaMalloc(reinterpret_cast<void**>(&d_out), 1);         \
    in1 = reinterpret_cast<half*>(malloc(size));             \
    in2 = reinterpret_cast<half*>(malloc(size));             \
    out = reinterpret_cast<bool*>(malloc(1));                \
98 99
    in1[0] = half(float16(v_in1));                           \
    in2[0] = half(float16(v_in2));                           \
K
Kexin Zhao 已提交
100 101 102 103 104 105 106 107 108 109 110 111
    cudaMemcpy(d_in1, in1, size, cudaMemcpyHostToDevice);    \
    cudaMemcpy(d_in2, in2, size, cudaMemcpyHostToDevice);    \
    op_type<<<1, 1>>>(d_in1, d_in2, d_out);                  \
    cudaMemcpy(out, d_out, 1, cudaMemcpyDeviceToHost);       \
    EXPECT_EQ(out[0], v_out);                                \
    free(in1);                                               \
    free(in2);                                               \
    free(out);                                               \
    cudaFree(d_in1);                                         \
    cudaFree(d_in2);                                         \
    cudaFree(d_out);                                         \
  }
K
Kexin Zhao 已提交
112 113

#ifdef PADDLE_CUDA_FP16
K
Kexin Zhao 已提交
114
namespace paddle {
K
kexinzhao 已提交
115
namespace platform {
K
Kexin Zhao 已提交
116

117
#if CUDA_VERSION < 9000
K
Kexin Zhao 已提交
118 119 120 121
ARITHMETIC_KERNEL(Add, +)
ARITHMETIC_KERNEL(Sub, -)
ARITHMETIC_KERNEL(Mul, *)
ARITHMETIC_KERNEL(Div, /)
K
Kexin Zhao 已提交
122

K
Kexin Zhao 已提交
123 124 125 126
ARITHMETIC_KERNEL_LAUNCH(Add)
ARITHMETIC_KERNEL_LAUNCH(Sub)
ARITHMETIC_KERNEL_LAUNCH(Mul)
ARITHMETIC_KERNEL_LAUNCH(Div)
K
Kexin Zhao 已提交
127

K
Kexin Zhao 已提交
128
// Negative sign kernel
129
__global__ void Neg(half* in) { in[0] = -in[0]; }
K
Kexin Zhao 已提交
130

K
Kexin Zhao 已提交
131 132
void TestNeg(float v_in, float v_out) {
  LOG(INFO) << "Test Neg on GPU!";
133 134
  half *in, *d_in;
  int size = sizeof(half);
135 136
  cudaMalloc(reinterpret_cast<void**>(&d_in), size);
  in = reinterpret_cast<half*>(malloc(size));
137
  in[0] = half(float16(v_in));
K
Kexin Zhao 已提交
138 139 140
  cudaMemcpy(d_in, in, size, cudaMemcpyHostToDevice);
  Neg<<<1, 1>>>(d_in);
  cudaMemcpy(in, d_in, size, cudaMemcpyDeviceToHost);
141
  EXPECT_EQ(static_cast<float>(float16(in[0])), v_out);
K
Kexin Zhao 已提交
142 143 144
  free(in);
  cudaFree(d_in);
}
K
Kexin Zhao 已提交
145

K
Kexin Zhao 已提交
146 147 148 149
COMPOUND_KERNEL(AddAssign, +=)
COMPOUND_KERNEL(SubAssign, -=)
COMPOUND_KERNEL(MulAssign, *=)
COMPOUND_KERNEL(DivAssign, /=)
K
Kexin Zhao 已提交
150

K
Kexin Zhao 已提交
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
COMPOUND_KERNEL_LAUNCH(AddAssign)
COMPOUND_KERNEL_LAUNCH(SubAssign)
COMPOUND_KERNEL_LAUNCH(MulAssign)
COMPOUND_KERNEL_LAUNCH(DivAssign)

COMPARISON_KERNEL(Equal, ==)
COMPARISON_KERNEL(NotEqual, !=)
COMPARISON_KERNEL(Less, <)
COMPARISON_KERNEL(LessEqual, <=)
COMPARISON_KERNEL(Greater, >)
COMPARISON_KERNEL(GreaterEqual, >=)

COMPARISON_KERNEL_LAUNCH(Equal)
COMPARISON_KERNEL_LAUNCH(NotEqual)
COMPARISON_KERNEL_LAUNCH(Less)
COMPARISON_KERNEL_LAUNCH(LessEqual)
COMPARISON_KERNEL_LAUNCH(Greater)
COMPARISON_KERNEL_LAUNCH(GreaterEqual)

TEST(float16, arithmetic_on_gpu) {
  TestAdd(1, 2, 3);
  TestSub(2, 1, 1);
  TestMul(2, 3, 6);
  TestDiv(6, 2, 3);
  TestNeg(1, -1);
K
Kexin Zhao 已提交
176 177
}

K
Kexin Zhao 已提交
178 179 180 181 182 183
TEST(float16, compound_on_gpu) {
  TestAddAssign(1, 2, 3);
  TestSubAssign(2, 1, 1);
  TestMulAssign(2, 3, 6);
  TestDivAssign(6, 2, 3);
}
K
Kexin Zhao 已提交
184

K
Kexin Zhao 已提交
185 186 187 188 189 190 191 192 193 194 195 196 197 198
TEST(float16, comparision_on_gpu) {
  TestEqual(1, 1, true);
  TestEqual(1, 2, false);
  TestNotEqual(2, 3, true);
  TestNotEqual(2, 2, false);
  TestLess(3, 4, true);
  TestLess(3, 3, false);
  TestLessEqual(3, 3, true);
  TestLessEqual(3, 2, false);
  TestGreater(4, 3, true);
  TestGreater(4, 4, false);
  TestGreaterEqual(4, 4, true);
  TestGreaterEqual(4, 5, false);
}
199
#endif  // CUDA_VERSION
K
Kexin Zhao 已提交
200 201 202 203 204 205 206 207 208 209 210 211 212

TEST(float16, conversion_on_gpu) {
  // Explicit conversion to and from cuda half
  EXPECT_EQ(float16(half(float16(1.0f))).x, 0x3c00);
  EXPECT_EQ(float16(half(float16(0.5f))).x, 0x3800);
  EXPECT_EQ(float16(half(float16(0.33333f))).x, 0x3555);
  EXPECT_EQ(float16(half(float16(0.0f))).x, 0x0000);
  EXPECT_EQ(float16(half(float16(-0.0f))).x, 0x8000);
  EXPECT_EQ(float16(half(float16(65504.0f))).x, 0x7bff);
  EXPECT_EQ(float16(half(float16(65536.0f))).x, 0x7c00);

  // Assignment operator
  float16 v_assign;
213
  v_assign = half(float16(1.0f));
K
Kexin Zhao 已提交
214 215
  EXPECT_EQ(v_assign.x, 0x3c00);
}
K
Kexin Zhao 已提交
216

K
kexinzhao 已提交
217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
TEST(float16, lod_tensor_on_gpu) {
  framework::LoDTensor src_tensor;
  framework::LoDTensor gpu_tensor;
  framework::LoDTensor dst_tensor;

  float16* src_ptr = src_tensor.mutable_data<float16>(
      framework::make_ddim({2, 2}), CPUPlace());

  float16 arr[4] = {float16(1.0f), float16(0.5f), float16(0.33333f),
                    float16(0.0f)};
  memcpy(src_ptr, arr, 4 * sizeof(float16));

  // CPU LoDTensor to GPU LoDTensor
  CUDAPlace gpu_place(0);
  CUDADeviceContext gpu_ctx(gpu_place);
  framework::TensorCopy(src_tensor, gpu_place, gpu_ctx, &gpu_tensor);

  // GPU LoDTensor to CPU LoDTensor
  framework::TensorCopy(gpu_tensor, CPUPlace(), gpu_ctx, &dst_tensor);

  // Sync before comparing LoDTensors
  gpu_ctx.Wait();
  const float16* dst_ptr = dst_tensor.data<float16>();
  ASSERT_NE(src_ptr, dst_ptr);
  for (size_t i = 0; i < 4; ++i) {
    EXPECT_EQ(src_ptr[i].x, dst_ptr[i].x);
  }
}

246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
template <typename T>
struct Functor {
  bool operator()(const T& val) {
    return std::type_index(typeid(T)) ==
           std::type_index(typeid(platform::float16));
  }
};

TEST(float16, typeid) {
  // the framework heavily used typeid hash
  Functor<float16> functor;
  float16 a = float16(.0f);
  Functor<int> functor2;
  int b(0);

  // compile time assert
  PADDLE_ASSERT(functor(a) == true);
  PADDLE_ASSERT(functor2(b) == false);
}

// GPU test
TEST(float16, isinf) {
  float16 a;
  a.x = 0x7c00;
  float16 b = float16(INFINITY);
  // underflow to 0
  float16 native_a(5e-40f);
  // overflow to inf
  float16 native_b(5e40f);
  EXPECT_EQ(std::isinf(a), true);
  EXPECT_EQ(std::isinf(b), true);
  EXPECT_EQ(std::isinf(native_b), true);
  EXPECT_EQ(native_a, float16(0));
}

TEST(float16, isnan) {
  float16 a;
  a.x = 0x7fff;
  float16 b = float16(NAN);
  float16 c = float16(5e40);
  // inf * +-0 will get a nan
  float16 d = c * float16(0);
  EXPECT_EQ(std::isnan(a), true);
  EXPECT_EQ(std::isnan(b), true);
  EXPECT_EQ(std::isnan(d), true);
}

TEST(float16, cast) {
  float16 a;
  a.x = 0x0070;
  auto b = a;
  {
    // change semantic, keep the same value
    float16 c = reinterpret_cast<float16&>(reinterpret_cast<unsigned&>(b));
    EXPECT_EQ(b, c);
  }

  {
    // use uint32 low 16 bit store float16
    uint32_t c = reinterpret_cast<uint32_t&>(b);
    float16 d;
    d.x = c;
    EXPECT_EQ(b, d);
  }
}

K
kexinzhao 已提交
312
}  // namespace platform
K
Kexin Zhao 已提交
313
}  // namespace paddle
314
#endif  // PADDLE_CUDA_FP16