test_concat_op.py 4.2 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17 18
import unittest
import numpy as np
19
from op_test import OpTest
20 21
import paddle.fluid as fluid
from paddle.fluid import compiler, Program, program_guard
22 23


24
class TestConcatOp(OpTest):
25
    def setUp(self):
26
        self.op_type = "concat"
27
        self.dtype = self.get_dtype()
C
chengduoZH 已提交
28 29 30
        self.init_test_data()
        self.inputs = {'X': [('x0', self.x0), ('x1', self.x1), ('x2', self.x2)]}
        self.attrs = {'axis': self.axis}
31 32 33 34 35 36
        if self.axis < 0:
            self.actual_axis = self.axis + len(self.x0.shape)
            self.actual_axis = self.actual_axis if self.actual_axis > 0 else 0
        else:
            self.actual_axis = self.axis

C
chengduoZH 已提交
37 38
        self.outputs = {
            'Out': np.concatenate(
39
                (self.x0, self.x1, self.x2), axis=self.actual_axis)
C
chengduoZH 已提交
40
        }
41

42 43 44
    def get_dtype(self):
        return "float32"

45 46 47
    def test_check_output(self):
        self.check_output()

48 49
    def test_check_grad(self):
        self.check_grad(['x0'], 'Out')
C
chengduoZH 已提交
50 51 52 53
        self.check_grad(['x1'], 'Out')
        self.check_grad(['x2'], 'Out')

    def init_test_data(self):
54 55 56
        self.x0 = np.random.random((2, 1, 4, 5)).astype(self.dtype)
        self.x1 = np.random.random((2, 2, 4, 5)).astype(self.dtype)
        self.x2 = np.random.random((2, 3, 4, 5)).astype(self.dtype)
C
chengduoZH 已提交
57 58 59
        self.axis = 1


60
class TestConcatOp2(TestConcatOp):
C
chengduoZH 已提交
61
    def init_test_data(self):
62 63 64
        self.x0 = np.random.random((2, 3, 4, 5)).astype(self.dtype)
        self.x1 = np.random.random((2, 3, 4, 5)).astype(self.dtype)
        self.x2 = np.random.random((2, 3, 4, 5)).astype(self.dtype)
C
chengduoZH 已提交
65
        self.axis = 1
66

67

68 69
class TestConcatOp3(TestConcatOp):
    def init_test_data(self):
70 71 72
        self.x0 = np.random.random((1, 256, 170, 256)).astype(self.dtype)
        self.x1 = np.random.random((1, 128, 170, 256)).astype(self.dtype)
        self.x2 = np.random.random((1, 128, 170, 256)).astype(self.dtype)
73 74 75 76 77 78
        self.axis = 1

    def test_check_grad(self):
        pass


79 80
class TestConcatOp4(TestConcatOp):
    def init_test_data(self):
81 82 83
        self.x0 = np.random.random((2, 3, 4, 5)).astype(self.dtype)
        self.x1 = np.random.random((2, 3, 4, 5)).astype(self.dtype)
        self.x2 = np.random.random((0, 3, 4, 5)).astype(self.dtype)
84 85 86 87 88 89
        self.axis = 0

    def test_check_grad(self):
        pass


90 91
class TestConcatOp5(TestConcatOp):
    def init_test_data(self):
92 93 94
        self.x0 = np.random.random((2, 1, 4, 5)).astype(self.dtype)
        self.x1 = np.random.random((2, 2, 4, 5)).astype(self.dtype)
        self.x2 = np.random.random((2, 3, 4, 5)).astype(self.dtype)
95 96 97
        self.axis = -3


98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
#----------------Concat Fp16----------------


def create_test_fp16(parent):
    class TestConcatFp16(parent):
        def get_dtype(self):
            return np.float16

    cls_name = "{0}_{1}".format(parent.__name__, "Fp16")
    TestConcatFp16.__name__ = cls_name
    globals()[cls_name] = TestConcatFp16


create_test_fp16(TestConcatOp)
create_test_fp16(TestConcatOp2)
create_test_fp16(TestConcatOp3)
create_test_fp16(TestConcatOp4)
create_test_fp16(TestConcatOp5)

117 118 119 120 121 122 123 124 125 126 127 128 129

class TestConcatOpError(OpTest):
    def test_errors(self):
        with program_guard(Program(), Program()):
            # The input type of concat_op must be Variable.
            x1 = fluid.create_lod_tensor(
                np.array([[-1]]), [[1]], fluid.CPUPlace())
            self.assertRaises(TypeError, fluid.layers.concat, x1)
            # The input dtype of concat_op must be float16(only support on GPU), float32, float64, int32, int64.
            x2 = fluid.layers.data(name='x2', shape=[4], dtype='uint8')
            self.assertRaises(TypeError, fluid.layers.concat, x2)


130 131
if __name__ == '__main__':
    unittest.main()