reduce_op.h 8.2 KB
Newer Older
G
guosheng 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#pragma once

#include "paddle/operators/math/math_function.h"

#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using DDim = framework::DDim;
template <typename T, size_t D, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenTensor = framework::EigenTensor<T, D, MajorType, IndexType>;

struct SumFunctor {
  template <typename Place, typename In, typename Out, typename Dim>
  void operator()(const Place& place, In& in, Out& out, const Dim& dim) {
    out.device(place) = in.sum(dim);
  }
};

struct SumGradFunctor {
  template <typename Place, typename In, typename In_Const, typename Out,
            typename Dim>
  void operator()(const Place& place, In_Const& in, In& in_grad, Out& out,
                  Out& out_grad, const Dim& dim, int size) {
    in_grad.device(place) = out_grad.broadcast(dim);
  }
};

struct MeanFunctor {
  template <typename Place, typename In, typename Out, typename Dim>
  void operator()(const Place& place, In& in, Out& out, const Dim& dim) {
    out.device(place) = in.mean(dim);
  }
};

struct MeanGradFunctor {
  template <typename Place, typename In, typename In_Const, typename Out,
            typename Dim>
  void operator()(const Place& place, In_Const& in, In& in_grad, Out& out,
                  Out& out_grad, const Dim& dim, int size) {
    in_grad.device(place) = out_grad.broadcast(dim) / in_grad.constant(size);
  }
};

struct MaxFunctor {
  template <typename Place, typename In, typename Out, typename Dim>
  void operator()(const Place& place, In& in, Out& out, const Dim& dim) {
    out.device(place) = in.maximum(dim);
  }
};

struct MinFunctor {
  template <typename Place, typename In, typename Out, typename Dim>
  void operator()(const Place& place, In& in, Out& out, const Dim& dim) {
    out.device(place) = in.minimum(dim);
  }
};

struct MaxOrMinGradFunctor {
  template <typename Place, typename In, typename In_Const, typename Out,
            typename Dim>
  void operator()(const Place& place, In_Const& in, In& in_grad, Out& out,
                  Out& out_grad, const Dim& dim, int size) {
    auto equals = in == out.broadcast(dim);
    auto ones = in_grad.constant(1);
    auto zeros = in_grad.constant(0);
    in_grad.device(place) =
        out_grad.broadcast(dim) * equals.select(ones, zeros);
  }
};

template <typename Place, typename T, typename Functor>
class ReduceKernel : public framework::OpKernel {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    int rank = context.Input<Tensor>("X")->dims().size();
    switch (rank) {
      case 1:
        ReduceCompute<1>(context);
        break;
      case 2:
        ReduceCompute<2>(context);
        break;
      case 3:
        ReduceCompute<3>(context);
        break;
      case 4:
        ReduceCompute<4>(context);
        break;
      case 5:
        ReduceCompute<5>(context);
        break;
      case 6:
        ReduceCompute<6>(context);
        break;
    }
  }

 private:
  template <size_t D>
  void ReduceCompute(const framework::ExecutionContext& context) const {
    auto* input = context.Input<Tensor>("X");
    auto* output = context.Output<Tensor>("Out");
    output->mutable_data<T>(context.GetPlace());

    auto x = EigenTensor<T, D>::From(*input);
    auto x_rank = static_cast<int>(x.dimensions().size());
    int dim = static_cast<int>(context.Attr<int>("dim"));
    if (dim < 0) dim = x_rank + dim;
    auto reduce_dim = Eigen::array<int, 1>({{dim}});
    // construct the squeezed output tensor
    bool keep_dim = true;  // static_cast<bool>(context.Attr<bool>("keep_dim"));
    DDim dims = output->dims();
    auto dims_vector = vectorize(dims);
    if (keep_dim && x_rank > 1) {
      dims_vector.erase(dims_vector.begin() + dim);
      dims = framework::make_ddim(dims_vector);
    }
    auto out = EigenTensor < T, D == 1 ? 1 : (D - 1) > ::From(*output, dims);
    auto& place = context.GetEigenDevice<Place>();
    Functor functor;
    functor(place, x, out, reduce_dim);
  }
};

template <typename Place, typename T, typename Functor>
class ReduceGradKernel : public framework::OpKernel {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    int rank = context.Input<Tensor>("X")->dims().size();
    switch (rank) {
      case 1:
        ReduceCompute<1>(context);
        break;
      case 2:
        ReduceCompute<2>(context);
        break;
      case 3:
        ReduceCompute<3>(context);
        break;
      case 4:
        ReduceCompute<4>(context);
        break;
      case 5:
        ReduceCompute<5>(context);
        break;
      case 6:
        ReduceCompute<6>(context);
        break;
    }
  }

 private:
  template <size_t D>
  void ReduceCompute(const framework::ExecutionContext& context) const {
    auto* input0 = context.Input<Tensor>("X");
    auto* input1 = context.Input<Tensor>("Out");
    auto* input2 = context.Input<Tensor>(framework::GradVarName("Out"));
    auto* output = context.Output<Tensor>(framework::GradVarName("X"));

    if (output != nullptr) {
      output->mutable_data<T>(context.GetPlace());
      auto x = EigenTensor<T, D>::From(*input0);
      auto x_grad = EigenTensor<T, D>::From(*output);
      auto x_rank = static_cast<int>(x.dimensions().size());
      int dim = static_cast<int>(context.Attr<int>("dim"));
      if (dim < 0) dim = x_rank + dim;
      DDim dims = input0->dims();
      dims[dim] = 1;
      auto x_reduce = EigenTensor<T, D>::From(*input1, dims);
      auto x_reduce_grad = EigenTensor<T, D>::From(*input2, dims);

      Eigen::array<int, D> braodcast_dim;
      for (size_t i = 0; i < D; ++i) braodcast_dim[i] = 1;
      braodcast_dim[dim] = input0->dims()[dim];
      auto& place = context.GetEigenDevice<Place>();
      Functor functor;
      functor(place, x, x_grad, x_reduce, x_reduce_grad, braodcast_dim,
              braodcast_dim[dim]);
    }
  }
};

// For EigenTensor unsupported reduce
template <typename T, typename Functor>
class ReduceGradEigenFreeKernel : public framework::OpKernel {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto* x = context.Input<Tensor>("X");
    auto* out = context.Input<Tensor>("Out");
    auto* x_grad = context.Output<Tensor>(framework::GradVarName("X"));
    auto* out_grad = context.Input<Tensor>(framework::GradVarName("Out"));
    if (x_grad != nullptr) {
      DDim dims = x->dims();
      int rank = dims.size();
      int dim = static_cast<int>(context.Attr<int>("dim"));
      if (dim < 0) dim = rank + dim;

      auto* x_data = x->data<T>();
      auto* x_grad_data = x_grad->mutable_data<T>(context.GetPlace());
      auto* out_data = out->data<T>();
      auto* out_grad_data = out_grad->data<T>();

      int outer_count = 1;
      int inner_count = 1;
      int mid_count = dims[dim];
      for (int i = 0; i < dim; ++i) {
        outer_count *= dims[i];
      }
      for (int i = dim + 1; i < rank; ++i) {
        inner_count *= dims[i];
      }

      int x_offset = 0;    // offset on raw data
      int out_offset = 0;  // offset on reduced data
      Functor functor;
      for (int i = 0; i < outer_count; ++i) {
        for (int j = 0; j < inner_count; ++j) {
          out_offset = inner_count * i + j;
          for (int k = 0; k < mid_count; ++k) {
            x_offset = (inner_count * mid_count) * i + inner_count * k + j;
            functor(x_data + x_offset, x_grad_data + x_offset,
                    out_data + out_offset, out_grad_data + out_offset,
                    mid_count);
          }
        }
      }
    }
  }
};

}  // namespace operators
}  // namespace paddle