test_sparse_elementwise_op.py 7.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function
import unittest
from operator import __add__, __sub__, __mul__, __truediv__

import numpy as np
import paddle
21
import paddle.incubate.sparse as sparse
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71

op_list = [__add__, __sub__, __mul__, __truediv__]


def get_actual_res(x, y, op):
    if op == __add__:
        res = paddle.incubate.sparse.add(x, y)
    elif op == __sub__:
        res = paddle.incubate.sparse.subtract(x, y)
    elif op == __mul__:
        res = paddle.incubate.sparse.multiply(x, y)
    elif op == __truediv__:
        res = paddle.incubate.sparse.divide(x, y)
    else:
        raise ValueError("unsupported op")
    return res


class TestSparseElementWiseAPI(unittest.TestCase):
    """
    test paddle.sparse.add, subtract, multiply, divide
    """

    def setUp(self):
        paddle.fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
        np.random.seed(2022)
        self.op_list = op_list
        self.csr_shape = [128, 256]
        self.coo_shape = [4, 8, 3, 5]
        self.support_dtypes = ['float32', 'float64', 'int32', 'int64']

    def func_test_csr(self, op):
        for dtype in self.support_dtypes:
            x = np.random.randint(-255, 255, size=self.csr_shape).astype(dtype)
            y = np.random.randint(-255, 255, size=self.csr_shape).astype(dtype)

            dense_x = paddle.to_tensor(x, dtype=dtype, stop_gradient=False)
            dense_y = paddle.to_tensor(y, dtype=dtype, stop_gradient=False)

            s_dense_x = paddle.to_tensor(x, dtype=dtype, stop_gradient=False)
            s_dense_y = paddle.to_tensor(y, dtype=dtype, stop_gradient=False)
            csr_x = s_dense_x.to_sparse_csr()
            csr_y = s_dense_y.to_sparse_csr()

            actual_res = get_actual_res(csr_x, csr_y, op)
            actual_res.backward(actual_res)

            expect_res = op(dense_x, dense_y)
            expect_res.backward(expect_res)

72 73 74 75
            np.testing.assert_allclose(expect_res.numpy(),
                                       actual_res.to_dense().numpy(),
                                       rtol=1e-05,
                                       equal_nan=True)
76
            if not (op == __truediv__ and dtype in ['int32', 'int64']):
77 78 79 80 81 82 83 84
                np.testing.assert_allclose(dense_x.grad.numpy(),
                                           csr_x.grad.to_dense().numpy(),
                                           rtol=1e-05,
                                           equal_nan=True)
                np.testing.assert_allclose(dense_y.grad.numpy(),
                                           csr_y.grad.to_dense().numpy(),
                                           rtol=1e-05,
                                           equal_nan=True)
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111

    def func_test_coo(self, op):
        for sparse_dim in range(len(self.coo_shape) - 1, len(self.coo_shape)):
            for dtype in self.support_dtypes:
                x = np.random.randint(-255, 255,
                                      size=self.coo_shape).astype(dtype)
                y = np.random.randint(-255, 255,
                                      size=self.coo_shape).astype(dtype)

                dense_x = paddle.to_tensor(x, dtype=dtype, stop_gradient=False)
                dense_y = paddle.to_tensor(y, dtype=dtype, stop_gradient=False)

                s_dense_x = paddle.to_tensor(x,
                                             dtype=dtype,
                                             stop_gradient=False)
                s_dense_y = paddle.to_tensor(y,
                                             dtype=dtype,
                                             stop_gradient=False)
                coo_x = s_dense_x.to_sparse_coo(sparse_dim)
                coo_y = s_dense_y.to_sparse_coo(sparse_dim)

                actual_res = get_actual_res(coo_x, coo_y, op)
                actual_res.backward(actual_res)

                expect_res = op(dense_x, dense_y)
                expect_res.backward(expect_res)

112 113 114 115 116 117 118 119 120 121 122 123
                np.testing.assert_allclose(expect_res.numpy(),
                                           actual_res.to_dense().numpy(),
                                           rtol=1e-05,
                                           equal_nan=True)
                np.testing.assert_allclose(dense_x.grad.numpy(),
                                           coo_x.grad.to_dense().numpy(),
                                           rtol=1e-05,
                                           equal_nan=True)
                np.testing.assert_allclose(dense_y.grad.numpy(),
                                           coo_y.grad.to_dense().numpy(),
                                           rtol=1e-05,
                                           equal_nan=True)
124 125 126 127

    def test_support_dtypes_csr(self):
        paddle.device.set_device('cpu')
        if paddle.device.get_device() == "cpu":
128 129
            for op in op_list:
                self.func_test_csr(op)
130 131 132 133

    def test_support_dtypes_coo(self):
        paddle.device.set_device('cpu')
        if paddle.device.get_device() == "cpu":
134 135
            for op in op_list:
                self.func_test_coo(op)
136

137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
    def test_add_same_indices(self):
        indices_data = [[0, 1], [0, 3]]
        values1_data = [[1.0], [2.0]]
        values2_data = [[1.0], [2.0]]
        shape = [2, 4, 2]

        sp_a = sparse.sparse_coo_tensor(indices_data,
                                        values1_data,
                                        shape,
                                        stop_gradient=False)
        sp_b = sparse.sparse_coo_tensor(indices_data,
                                        values2_data,
                                        shape,
                                        stop_gradient=False)

        values1 = paddle.to_tensor(values1_data, stop_gradient=False)
        values2 = paddle.to_tensor(values2_data, stop_gradient=False)

        #c.values() = a.values() + b.values()
        sp_c = sparse.add(sp_a, sp_b)
        sp_c.backward()
        ref_c = values1 + values2
        ref_c.backward()
        np.testing.assert_allclose(sp_c.values().numpy(), ref_c.numpy())
        np.testing.assert_allclose(sp_a.grad.values().numpy(),
                                   values1.grad.numpy())
        np.testing.assert_allclose(sp_b.grad.values().numpy(),
                                   values2.grad.numpy())

166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
    def test_add_bias(self):
        indices_data = [[0, 1], [0, 3]]
        values_data = [[1.0, 1.0], [2.0, 2.0]]
        shape = [2, 4, 2]

        sp_a = sparse.sparse_coo_tensor(indices_data,
                                        values_data,
                                        shape,
                                        stop_gradient=False)

        bias_values = [1.0, 2.0]

        values1 = paddle.to_tensor(values_data, stop_gradient=False)
        values2 = paddle.to_tensor(bias_values, stop_gradient=False)
        values3 = paddle.to_tensor(bias_values, stop_gradient=False)

        #c.values() = a.values() + b
        sp_c = sparse.add(sp_a, values2)
        sp_c.backward()
        ref_c = values1 + values3
        ref_c.backward()
        np.testing.assert_allclose(sp_c.values().numpy(), ref_c.numpy())
        np.testing.assert_allclose(sp_a.grad.values().numpy(),
                                   values1.grad.numpy())
        np.testing.assert_allclose(values2.grad.numpy(), values3.grad.numpy())

192 193 194 195

if __name__ == "__main__":
    paddle.device.set_device('cpu')
    unittest.main()