hl_matrix.h 7.7 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Z
zhangjinchao01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#ifndef HL_MATRIX_H_
#define HL_MATRIX_H_

#include "hl_base.h"

/**
 * @brief   Matrix addition: C_d[i] = alpha * A_d[i] + beta * B_d[i].
 *
 * @param[in]   A_d     input matrix (M x N).
 * @param[in]   B_d     input matrix (M x N).
 * @param[out]  C_d     output matrix (M x N).
 * @param[in]   dimM    matrix height.
 * @param[in]   dimN    matrix width.
 * @param[in]   alpha   scalar used for addition.
 * @param[in]   beta    scalar used for addition.
 *
 */
32 33
extern void hl_matrix_add(
    real* A_d, real* B_d, real* C_d, int dimM, int dimN, real alpha, real beta);
Z
zhangjinchao01 已提交
34 35 36 37 38 39 40 41 42
/**
 * @brief   Matrix Softmax.
 *
 * @param[in]   A_d     input maxtrix (M x N).
 * @param[out]  C_d     output matrix (M x N).
 * @param[in]   dimM    matrix height.
 * @param[in]   dimN    matrix width.
 *
 */
43
extern void hl_matrix_softmax(real* A_d, real* C_d, int dimM, int dimN);
Z
zhangjinchao01 已提交
44 45 46 47 48 49 50 51 52 53 54

/**
 * @brief   Matrix softmax derivative.
 *
 * @param[out]  grad_d       intput matrix (M x N).
 * @param[in]   output_d     output matrix (M x N).
 * @param[in]   sftmaxSum_d  softmax sum (M * 1).
 * @param[in]   dimM         matrix height.
 * @param[in]   dimN         matrix width.
 *
 */
55 56
extern void hl_matrix_softmax_derivative(
    real* grad_d, real* output_d, real* sftmaxSum_d, int dimM, int dimN);
Z
zhangjinchao01 已提交
57 58 59 60 61 62 63 64 65 66

/**
 * @brief   Sequence softmax.
 *
 * @param[in]   A_d         input vector.
 * @param[out]  C_d         output vector.
 * @param[in]   index       start positions of sequence.
 * @param[in]   numSequence sequence number.
 *
 */
67 68
extern void hl_sequence_softmax_forward(real* A_d,
                                        real* C_d,
Z
zhangjinchao01 已提交
69 70 71 72 73 74 75 76 77 78 79 80 81
                                        const int* index,
                                        int numSequence);

/**
 * @brief   Matrix classification error.
 *
 * @param[in]   A_d     input matrix (M x N).
 * @param[in]   B_d     input vector (M x 1).
 * @param[out]  C_d     output vector (M x 1).
 * @param[in]   dimM    matrix height.
 * @param[in]   dimN    matrix width.
 *
 */
82 83
extern void hl_matrix_classification_error(
    real* A_d, int* B_d, real* C_d, int dimM, int dimN);
Z
zhangjinchao01 已提交
84 85 86 87 88 89 90 91 92 93 94

/**
 * @brief   Matrix cross entropy.
 *
 * @param[in]   A_d     input matrix (M x N).
 * @param[out]  C_d     output matrix (M X 1).
 * @param[in]   label_d input matrix (M x 1).
 * @param[in]   dimM    matrix height.
 * @param[in]   dimN    matrix width.
 *
 */
95 96
extern void hl_matrix_cross_entropy(
    real* A_d, real* C_d, int* label_d, int dimM, int dimN);
Z
zhangjinchao01 已提交
97 98 99 100 101 102 103 104 105 106 107

/**
 * @brief   Matrix cross entropy back propagation.
 *
 * @param[out]  grad_d      output matrix (M x N).
 * @param[in]   output_d    input matrix (M x N).
 * @param[in]   label_d     input vector (M x 1).
 * @param[in]   dimM        matrix height.
 * @param[in]   dimN        matrix width.
 *
 */
108 109
extern void hl_matrix_cross_entropy_bp(
    real* grad_d, real* output_d, int* label_d, int dimM, int dimN);
Z
zhangjinchao01 已提交
110

111 112 113 114 115 116 117 118 119
/**
 * @brief  Matrix multi-binary label cross entropy
 *
 * @param[in]   output    input matrix (M x N).
 * @param[out]  entropy   output matrix (M x 1).
 * @param[in]   mat       input sparse matrix.
 * @param[in]   dimM      matrix height.
 * @param[in]   dimN      matrix width.
 */
120 121
extern void hl_matrix_multi_binary_cross_entropy(
    real* output, real* entropy, hl_sparse_matrix_s mat, int dimM, int dimN);
122 123 124 125 126 127 128 129 130 131

/**
 * @brief  Matrix multi-binary label cross entropy backprop
 *
 * @param[in]   output    input matrix (M x N).
 * @param[out]  grad      output matrix (M x N).
 * @param[in]   mat       input sparse matrix.
 * @param[in]   dimM      matrix height.
 * @param[in]   dimN      matrix width.
 */
132 133
extern void hl_matrix_multi_binary_cross_entropy_bp(
    real* output, real* grad, hl_sparse_matrix_s mat, int dimM, int dimN);
134

Z
zhangjinchao01 已提交
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
/**
 * @brief  Matrix zero memory.
 *
 * @param[in,out]  data   input data.
 * @param[in]      num    length of data.
 *
 */
extern void hl_matrix_zero_mem(real* data, int num);

/**
 * @brief parameter relu forward
 *
 * @param[out] output     output data
 * @param[in]  input      input data
 * @param[in]  w          parameter data
 * @param[in]  width      matrix width
 * @param[in]  height     matrix height
 * @param[in]  partial_sum
 */

155 156
extern void hl_param_relu_forward(
    real* output, real* input, real* w, int width, int height, int partial_sum);
Z
zhangjinchao01 已提交
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
/**
 * @brief parameter relu backward w
 *
 * @param[out] grad_w      w grad
 * @param[in]  grad_o      output grad
 * @param[in]  input       input data
 * @param[in]  width       matrix width
 * @param[in]  height      matrix height
 * @param[in]  partial_sum
 */
extern void hl_param_relu_backward_w(real* grad_w,
                                     real* grad_o,
                                     real* input,
                                     int width,
                                     int height,
                                     int partial_sum);
/**
 * @brief parameter relu backward diff
 *
 * @param[in]       grad_o      output grad
 * @param[in]       input       input data
 * @param[in]       w           parameter
 * @param[out]      diff        diff
 * @param[in]       width       matrix width
 * @param[in]       height      matrix height
 * @param[in]       partial_sum
 */
extern void hl_param_relu_backward_diff(real* grad_o,
                                        real* input,
                                        real* w,
                                        real* diff,
                                        int width,
                                        int height,
                                        int partial_sum);

192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
/**
 * @brief   Matrix addition: A_d[i][j] += scale * B_d[j/channel].
 *
 * @param[in]   A_d     input matrix (M x N).
 * @param[in]   B_d     input matrix (1 x channel).
 * @param[in]   channel width of B.
 * @param[in]   dimM    height of A.
 * @param[in]   dimN    width of A.
 * @param[in]   scale   scalar used for addition.
 *
 */
extern void hl_matrix_add_shared_bias(real* A_d,
                                      real* B_d,
                                      const int channel,
                                      const int dimM,
                                      const int dimN,
                                      real scale);

/**
 * @brief   Matrix addition: A_d[i][j] += scale * B_d[j/channel].
 *
 * @param[in]   B_d     input matrix (1 x channel).
 * @param[in]   A_d     input matrix (M x N).
 * @param[in]   channel width of B.
 * @param[in]   dimM    height of A.
 * @param[in]   dimN    width of A.
 * @param[in]   scale   scalar used for addition.
 *
 */
extern void hl_matrix_collect_shared_bias(real* B_d,
                                          real* A_d,
                                          const int channel,
                                          const int dimM,
                                          const int dimN,
                                          real scale);

H
Haonan 已提交
228 229 230 231 232 233 234 235 236 237 238 239
/**
 * @brief  Matrix rotation in 90 degrees
 *
 * @param[in]   mat       input matrix (M x N).
 * @param[out]  matRot    output matrix (N x M).
 * @param[in]   dimM      input matrix height.
 * @param[in]   dimN      input matrix width.
 * @param[in]   clockWise rotation direction
 */
extern void hl_matrix_rotate(
    real* mat, real* matRot, int dimM, int dimN, bool clockWise);

Z
zhangjinchao01 已提交
240
#endif /* HL_MATRIX_H_ */