roi_align_grad_kernel.cc 7.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/phi/kernels/roi_align_grad_kernel.h"

#include "paddle/phi/backends/cpu/cpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/empty_kernel.h"
#include "paddle/phi/kernels/funcs/math_function.h"

namespace phi {

template <class T>
void bilinear_interpolate_gradient(const int height,
                                   const int width,
                                   T y,
                                   T x,
                                   const T out_grad_this_bin,
                                   const T count,
                                   T* batch_grad_data) {
  int x_low, y_low, x_high, y_high;
  T w1, w2, w3, w4;
  if (y < -1.0 || y > height || x < -1.0 || x > width) {
    w1 = w2 = w3 = w4 = 0;
    x_low = x_high = y_low = y_high = -1;
    return;
  }
  y = y <= 0 ? 0 : y;
  x = x <= 0 ? 0 : x;
  y_low = static_cast<int>(y);
  x_low = static_cast<int>(x);
  if (y_low >= height - 1) {
    y_high = y_low = height - 1;
    y = static_cast<T>(y_low);
  } else {
    y_high = y_low + 1;
  }

  if (x_low >= width - 1) {
    x_high = x_low = width - 1;
    x = static_cast<T>(x_low);
  } else {
    x_high = x_low + 1;
  }

  T ly = y - y_low, lx = x - x_low;
  T hy = 1. - ly, hx = 1. - lx;
  w1 = hy * hx, w2 = hy * lx, w3 = ly * hx, w4 = ly * lx;
  T diff1 = out_grad_this_bin * w1 / count;
  T diff2 = out_grad_this_bin * w2 / count;
  T diff3 = out_grad_this_bin * w3 / count;
  T diff4 = out_grad_this_bin * w4 / count;
  if (x_low >= 0 && x_high >= 0 && y_low >= 0 && y_high >= 0) {
    *(batch_grad_data + y_low * width + x_low) += diff1;
    *(batch_grad_data + y_low * width + x_high) += diff2;
    *(batch_grad_data + y_high * width + x_low) += diff3;
    *(batch_grad_data + y_high * width + x_high) += diff4;
  }
}

template <typename T, typename Context>
void RoiAlignGradKernel(const Context& dev_ctx,
                        const DenseTensor& x,
                        const DenseTensor& boxes,
                        paddle::optional<const DenseTensor&> boxes_num,
                        const DenseTensor& out_grad,
                        int pooled_height,
                        int pooled_width,
                        float spatial_scale,
                        int sampling_ratio,
                        bool aligned,
                        DenseTensor* dx) {
  auto in_dims = x.dims();
  int channels = in_dims[1];
  int height = in_dims[2];
  int width = in_dims[3];
  int rois_num = boxes.dims()[0];

  if (!dx) {
    return;
  }

  DenseTensor roi_batch_id_list = Empty<int>(dev_ctx, {rois_num});
  int* box_batch_id_data = roi_batch_id_list.data<int>();

  int boxes_batch_size;
  if (boxes_num) {
    boxes_batch_size = boxes_num->numel();
    auto* boxes_num_data = boxes_num->data<int>();
    int start = 0;
    for (int n = 0; n < boxes_batch_size; ++n) {
      for (int i = start; i < start + boxes_num_data[n]; ++i) {
        box_batch_id_data[i] = n;
      }
      start += boxes_num_data[n];
    }
  } else {
    auto boxes_lod = boxes.lod().back();
    boxes_batch_size = boxes_lod.size() - 1;
    for (int n = 0; n < boxes_batch_size; ++n) {
      for (std::size_t i = boxes_lod[n]; i < boxes_lod[n + 1]; ++i) {
        box_batch_id_data[i] = n;
      }
    }
  }
  dev_ctx.template Alloc<T>(dx);

  phi::funcs::SetConstant<Context, T> set_zero;
  set_zero(dev_ctx, dx, static_cast<T>(0));

  int output_grad_size = out_grad.numel();

  if ((!out_grad.IsInitialized()) || (output_grad_size <= 0)) {
    return;
  }

  const T* boxes_data = boxes.data<T>();
  const T* out_grad_data = out_grad.data<T>();
  T* dx_data = dev_ctx.template Alloc<T>(dx);

  auto in_stride = phi::stride(x.dims());
  auto roi_stride = phi::stride(boxes.dims());
  auto out_stride = phi::stride(out_grad.dims());

  T roi_offset = aligned ? T(0.5) : 0;
  for (int n = 0; n < rois_num; ++n) {
    int box_batch_idx = box_batch_id_data[n];
    T roi_xmin = boxes_data[0] * spatial_scale - roi_offset;
    T roi_ymin = boxes_data[1] * spatial_scale - roi_offset;
    T roi_xmax = boxes_data[2] * spatial_scale - roi_offset;
    T roi_ymax = boxes_data[3] * spatial_scale - roi_offset;

    T roi_width = roi_xmax - roi_xmin;
    T roi_height = roi_ymax - roi_ymin;
    roi_width = std::max(roi_width, static_cast<T>(1.));
    roi_height = std::max(roi_height, static_cast<T>(1.));
    if (!aligned) {
      roi_width = std::max(roi_width, static_cast<T>(1.));
      roi_height = std::max(roi_height, static_cast<T>(1.));
    }

    T bin_size_h = static_cast<T>(roi_height) / static_cast<T>(pooled_height);
    T bin_size_w = static_cast<T>(roi_width) / static_cast<T>(pooled_width);
    for (int c = 0; c < channels; ++c) {
      T* batch_grad_data =
          dx_data + box_batch_idx * in_stride[0] + c * in_stride[1];
      const T* batch_out_grad_data =
          out_grad_data + n * out_stride[0] + c * out_stride[1];
      for (int ph = 0; ph < pooled_height; ++ph) {
        for (int pw = 0; pw < pooled_width; ++pw) {
          int pool_index = ph * pooled_width + pw;
          T out_grad_this_bin = batch_out_grad_data[pool_index];
          int roi_bin_grid_h = (sampling_ratio > 0)
                                   ? sampling_ratio
                                   : ceil(roi_height / pooled_height);
          int roi_bin_grid_w = (sampling_ratio > 0)
                                   ? sampling_ratio
                                   : ceil(roi_width / pooled_width);
          T count = roi_bin_grid_h * roi_bin_grid_w;
          for (int iy = 0; iy < roi_bin_grid_h; iy++) {
            const T y = roi_ymin + ph * bin_size_h +
                        static_cast<T>(iy + .5f) * bin_size_h /
                            static_cast<T>(roi_bin_grid_h);
            for (int ix = 0; ix < roi_bin_grid_w; ix++) {
              const T x = roi_xmin + pw * bin_size_w +
                          static_cast<T>(ix + .5f) * bin_size_w /
                              static_cast<T>(roi_bin_grid_w);
              bilinear_interpolate_gradient(height,
                                            width,
                                            y,
                                            x,
                                            out_grad_this_bin,
                                            count,
                                            batch_grad_data);
            }
          }
        }
      }
    }
    boxes_data += roi_stride[0];
  }
}

}  // namespace phi

PD_REGISTER_KERNEL(roi_align_grad,
                   CPU,
                   ALL_LAYOUT,
                   phi::RoiAlignGradKernel,
                   float,
                   double,
                   int) {}