momentum_op.cc 5.2 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
S
sidgoyal78 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/momentum_op.h"
S
sidgoyal78 已提交
16 17 18 19

namespace paddle {
namespace operators {

D
dzhwinter 已提交
20 21
using Tensor = framework::Tensor;

S
sidgoyal78 已提交
22 23 24 25 26
class MomentumOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
27
  void InferShape(framework::InferShapeContext* ctx) const override {
S
sidgoyal78 已提交
28 29 30 31 32 33 34 35
    PADDLE_ENFORCE(ctx->HasInput("Param"),
                   "Input(param) of Momentum should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("Grad"),
                   "Input(grad) of Momentum should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("Velocity"),
                   "Input(velocity) of Momentum should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("LearningRate"),
                   "Input(LearningRate) of Momentum should not be null.");
C
chengduo 已提交
36 37 38 39 40
    PADDLE_ENFORCE(
        ctx->GetInputsVarType("Param").front() ==
            framework::proto::VarType::LOD_TENSOR,
        "The input var's type should be LoDTensor, but the received is %s",
        ctx->Inputs("Param").front(), ctx->GetInputsVarType("Param").front());
S
sidgoyal78 已提交
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59

    PADDLE_ENFORCE(ctx->HasOutput("ParamOut"),
                   "Output(ParamOut) of Momentum should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("VelocityOut"),
                   "Output(VelocityOut) of Momentum should not be null.");

    auto param_dim = ctx->GetInputDim("Param");
    PADDLE_ENFORCE_EQ(
        param_dim, ctx->GetInputDim("Grad"),
        "Param and Grad input of MomentumOp should have the same dimension.");
    PADDLE_ENFORCE_EQ(
        param_dim, ctx->GetInputDim("Velocity"),
        "Param and Velocity of MomentumOp should have the same dimension.");
    PADDLE_ENFORCE_EQ(framework::product(ctx->GetInputDim("LearningRate")), 1,
                      "Learning_rate should be a scalar");

    ctx->SetOutputDim("ParamOut", param_dim);
    ctx->SetOutputDim("VelocityOut", param_dim);
  }
D
dzhwinter 已提交
60
  framework::OpKernelType GetExpectedKernelType(
61 62
      const framework::ExecutionContext& ctx) const override {
    auto input_data_type = framework::GetDataTypeOfVar(ctx.InputVar("Param"));
D
dzhwinter 已提交
63 64
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
  }
S
sidgoyal78 已提交
65 66
};

67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
class MomentumOpInferVarType : public framework::VarTypeInference {
 public:
  void operator()(const framework::OpDesc& op_desc,
                  framework::BlockDesc* block) const override {
    auto input_var = op_desc.Input("Param")[0];
    for (auto& out_var : op_desc.Output("ParamOut")) {
      if (block->FindRecursiveOrCreateVar(input_var).GetType() ==
          framework::proto::VarType::SELECTED_ROWS) {
        block->FindRecursiveOrCreateVar(out_var).SetType(
            framework::proto::VarType::SELECTED_ROWS);
      } else {
        block->FindRecursiveOrCreateVar(out_var).SetType(
            framework::proto::VarType::LOD_TENSOR);
      }
    }
  }
};

S
sidgoyal78 已提交
85 86
class MomentumOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
87
  void Make() override {
S
sidgoyal78 已提交
88 89 90 91 92 93 94 95 96 97 98 99 100 101
    AddInput("Param",
             "(Tensor, default Tensor<float>) "
             "Input parameter that has to be updated");
    AddInput("Grad",
             "(Tensor, default Tensor<float>) "
             "Input gradient of the parameter");
    AddInput("Velocity",
             "(Tensor, default Tensor<float>) "
             "Input velocity (corresponding to the parameter) "
             "that has to be updated");
    AddInput("LearningRate",
             "(Tensor, default Tensor<float>) "
             "Input learning rate");

D
dangqingqing 已提交
102 103 104 105 106 107
    AddOutput("ParamOut",
              "(Tensor) This output is updated parameter. "
              "It shared memory with Input(Param).");
    AddOutput("VelocityOut",
              "(Tensor) This output is updated velocity. "
              "It shared memory with Input(Velocity).");
S
sidgoyal78 已提交
108 109

    AddAttr<float>("mu", "(float) Momentum coefficient");
110
    AddAttr<bool>("use_nesterov",
K
kexinzhao 已提交
111 112
                  "(bool, default false) "
                  "Use Nesterov Momentum")
K
kavyasrinet 已提交
113
        .SetDefault(false);
S
sidgoyal78 已提交
114
    AddComment(R"DOC(
K
kexinzhao 已提交
115 116 117 118 119 120 121 122
Momentum Optimizer.

This optimizer has a flag for Nestrov Momentum.
The update equations are as follows:

$$
velocity = mu * velocity + gradient \\
if (use\_nesterov):   \\
123
  param = param - (gradient + mu * velocity) * learning\_rate \\
K
kexinzhao 已提交
124 125 126
else:   \\
  param = param - learning\_rate * velocity. \\
$$
S
sidgoyal78 已提交
127 128 129 130 131 132 133 134

)DOC");
  }
};
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
135 136 137
REGISTER_OPERATOR(momentum, ops::MomentumOp, ops::MomentumOpMaker,
                  paddle::framework::EmptyGradOpMaker,
                  ops::MomentumOpInferVarType);
138 139
REGISTER_OP_CPU_KERNEL(momentum, ops::MomentumOpKernel<float>,
                       ops::MomentumOpKernel<double>);