npu_op_runner.h 5.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#ifdef PADDLE_WITH_ASCEND_CL
16 17
#pragma once
#include <paddle/fluid/framework/operator.h>
18
#include <paddle/fluid/framework/type_defs.h>
19 20 21 22 23

#include <string>
#include <vector>

#include "acl/acl.h"
24
#include "paddle/fluid/framework/tensor_util.h"
25 26 27 28 29 30 31
#include "paddle/fluid/operators/npu_op_runner.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using DataLayout = framework::DataLayout;
32 33
using NPUAttribute = framework::NPUAttribute;
using NPUAttributeMap = framework::NPUAttributeMap;
34
using DeviceContextPool = platform::DeviceContextPool;
35 36 37

class NpuOpRunner {
 public:
38 39 40 41 42 43
  NpuOpRunner();
  explicit NpuOpRunner(const std::string &op_type);
  NpuOpRunner(const std::string &op_type,
              const std::vector<Tensor> &inputs = {},
              const std::vector<Tensor> &outputs = {},
              const NPUAttributeMap &attrs = {});
44

L
Leo Chen 已提交
45 46 47 48 49 50 51 52
  // NOTE(zhiqiu): why forbid copy and operator= ?
  // Since we will free the tensor_descs and data_buffers in the ~NpuOpRunner,
  // if shallow copy is performed on tensor_descs and data_buffers, it may
  // result
  // in use-after-free bugs.
  NpuOpRunner(const NpuOpRunner &runner) = delete;
  NpuOpRunner &operator=(const NpuOpRunner &runner) = delete;

53 54 55 56
  ~NpuOpRunner();

  const std::string &Type();

57 58
  NpuOpRunner &SetType(const std::string &name);

59
  NpuOpRunner &AddAttr(const std::string &name, const NPUAttribute &attr);
60

61
  NpuOpRunner &AddAttrs(const NPUAttributeMap &attrs);
62 63 64

  NpuOpRunner &AddInput(const Tensor &tensor);

65 66 67 68 69 70 71 72 73
  // NOTE(zhiqiu): CANN-5.0.2 support input tensors on host.
  // Specifically, the tensor of shape, tensor of dims, etc, which are are small
  // vector/list.
  NpuOpRunner &AddInput(const Tensor &tensor, aclMemType mem_type);

  NpuOpRunner &AddInput(std::vector<int32_t> &&dims);

  NpuOpRunner &AddInput(std::vector<int64_t> &&dims);

74 75 76 77
  NpuOpRunner &AddInput(std::vector<float> &&values);

  NpuOpRunner &AddInput(std::vector<double> &&values);

78 79 80 81
  NpuOpRunner &AddOutput(const Tensor &tensor);

  NpuOpRunner &AddInputs(const std::vector<Tensor> &tensors);

82 83
  NpuOpRunner &AddInputNames(const std::vector<std::string> &names);

84 85 86 87 88 89 90 91 92 93 94 95 96 97
  NpuOpRunner &AddOutputs(const std::vector<Tensor> &tensors);

  aclTensorDesc *GetInputDesc(size_t index);

  aclTensorDesc *GetOutputDesc(size_t index);

  std::vector<aclTensorDesc *> &GetInputDescs();

  std::vector<aclTensorDesc *> &GetOutputDescs();

  std::vector<aclDataBuffer *> &GetInputBuffers();

  std::vector<aclDataBuffer *> &GetOutputBuffers();

L
Leo Chen 已提交
98
  void Run(aclrtStream stream = nullptr) const;
99 100

 private:
101 102
  aclTensorDesc *CreateTensorDesc(Tensor tensor,
                                  aclMemType mem_type = ACL_MEMTYPE_DEVICE);
103 104 105 106 107 108 109 110
  aclDataBuffer *CreateDataBuffer(Tensor tensor);

 private:
  std::string op_type_;
  std::vector<aclDataBuffer *> input_buffers_;
  std::vector<aclDataBuffer *> output_buffers_;
  std::vector<aclTensorDesc *> input_descs_;
  std::vector<aclTensorDesc *> output_descs_;
111
  std::vector<Tensor> host_tensors_;
112 113 114
  aclopAttr *attr_{nullptr};
};

115 116
aclDataType ConvertToNpuDtype(framework::proto::VarType::Type dtype);

117 118 119 120 121 122 123 124 125 126
aclrtStream GetCurrentNPUStream(int device_id = -1);

template <typename T>
void FillNpuTensorWithConstant(Tensor *tensor, T val) {
  PADDLE_ENFORCE_EQ(
      tensor->IsInitialized(), true,
      platform::errors::InvalidArgument("The tensor should be initialized."));
  PADDLE_ENFORCE_EQ(
      platform::is_npu_place(tensor->place()), true,
      platform::errors::InvalidArgument("The tensor should be on NPUPlace."));
127 128 129 130 131 132 133 134 135

  int numel = tensor->numel();
  if (numel == 1) {
    Tensor npu_pinned_tensor(tensor->type());
    platform::NPUPinnedPlace npu_pinned_place;
    auto npu_pinned_ptr =
        npu_pinned_tensor.mutable_data<T>({1}, npu_pinned_place);
    *npu_pinned_ptr = val;

136
    memory::Copy(BOOST_GET_CONST(platform::NPUPlace, tensor->place()),
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
                 tensor->data<void>(), npu_pinned_place, npu_pinned_ptr,
                 sizeof(T), GetCurrentNPUStream());

    auto npu_pinned_allocator =
        static_cast<paddle::memory::allocation::NPUPinnedAllocator *>(
            paddle::memory::allocation::AllocatorFacade::Instance()
                .GetAllocator(npu_pinned_place)
                .get());
    paddle::memory::allocation::Allocation *allocation =
        npu_pinned_tensor.Holder().get();

    npu_pinned_allocator->RecordEvent(allocation, GetCurrentNPUStream());
  } else {
    std::vector<T> vec(numel, static_cast<T>(val));
    auto device_id = platform::GetCurrentNPUDeviceId();
    platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
    auto *dev_ctx = static_cast<platform::NPUDeviceContext *>(
        pool.Get(platform::NPUPlace(device_id)));

    paddle::framework::TensorFromVector<T>(vec, *dev_ctx, tensor);
157 158 159
  }
}

160 161
}  // namespace operators
}  // namespace paddle
162
#endif