npu_op_runner.cc 15.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/npu_op_runner.h"

#include <paddle/fluid/framework/data_type.h>
#include <paddle/fluid/framework/operator.h>

#include <map>
#include <string>
#include <vector>

#include "acl/acl.h"
#include "acl/acl_op_compiler.h"

#include "paddle/fluid/framework/framework.pb.h"

A
Aganlengzi 已提交
29 30
DECLARE_string(npu_precision_mode);

31 32 33 34 35 36
namespace paddle {
namespace operators {

static std::map<framework::proto::VarType::Type, aclDataType>
    DTYPE_2_ACL_DTYPE = {
        {framework::proto::VarType::BOOL, ACL_BOOL},
P
pangyoki 已提交
37
        {framework::proto::VarType::UINT8, ACL_UINT8},
38
        {framework::proto::VarType::INT8, ACL_INT8},
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
        {framework::proto::VarType::INT16, ACL_INT16},
        {framework::proto::VarType::INT32, ACL_INT32},
        {framework::proto::VarType::INT64, ACL_INT64},
        {framework::proto::VarType::FP16, ACL_FLOAT16},
        {framework::proto::VarType::FP32, ACL_FLOAT},
        {framework::proto::VarType::FP64, ACL_DOUBLE},
};

static std::map<DataLayout, aclFormat> DATA_LAYOUT_2_ACL_FORMAT = {
    {DataLayout::kNCHW, ACL_FORMAT_NCHW},
    {DataLayout::kNHWC, ACL_FORMAT_NHWC},
    {DataLayout::kAnyLayout, ACL_FORMAT_ND},
};

aclDataType ConvertToNpuDtype(framework::proto::VarType::Type dtype) {
  auto iter = DTYPE_2_ACL_DTYPE.find(dtype);
  PADDLE_ENFORCE_NE(iter, DTYPE_2_ACL_DTYPE.end(),
                    platform::errors::NotFound(
                        "The data type (%s) can not convert to ACL data type.",
                        framework::DataTypeToString(dtype)));
  return iter->second;
}

aclFormat ConvertToNpuFormat(DataLayout layout) {
  auto iter = DATA_LAYOUT_2_ACL_FORMAT.find(layout);
  PADDLE_ENFORCE_NE(
      iter, DATA_LAYOUT_2_ACL_FORMAT.end(),
      platform::errors::NotFound(
          "The data type (%s) can not convert to ACL data type.", layout));
  return iter->second;
}

71 72 73 74
aclrtStream GetCurrentNPUStream(int device_id) {
  if (device_id == -1) {
    device_id = platform::GetCurrentNPUDeviceId();
  }
75 76 77 78 79 80
  platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
  auto *dev_ctx = static_cast<platform::NPUDeviceContext *>(
      pool.Get(platform::NPUPlace(device_id)));
  return dev_ctx->stream();
}

81 82 83
NpuOpRunner::NpuOpRunner() {}

NpuOpRunner::NpuOpRunner(const std::string &op_type) : op_type_(op_type) {}
84

85 86
NpuOpRunner::NpuOpRunner(const std::string &op_type,
                         const std::vector<Tensor> &inputs,
87
                         const std::vector<Tensor> &outputs,
88
                         const NPUAttributeMap &attrs)
89 90 91 92 93 94 95
    : op_type_(op_type) {
  AddInputs(inputs);
  AddOutputs(outputs);
  AddAttrs(attrs);
}

NpuOpRunner::~NpuOpRunner() {
L
Leo Chen 已提交
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
  VLOG(5) << "Free NpuOpRunner(" << this << ") of " << op_type_;
  // Is it safe to free the descs/buffers after run called in host ?
  aclopDestroyAttr(attr_);  // return void
  for (auto desc : input_descs_) {
    aclDestroyTensorDesc(desc);
  }
  for (auto desc : output_descs_) {
    aclDestroyTensorDesc(desc);
  }
  for (auto buffer : input_buffers_) {
    PADDLE_ENFORCE_NPU_SUCCESS(aclDestroyDataBuffer(buffer));
  }
  for (auto buffer : output_buffers_) {
    PADDLE_ENFORCE_NPU_SUCCESS(aclDestroyDataBuffer(buffer));
  }
111 112 113 114
}

const std::string &NpuOpRunner::Type() { return op_type_; }

115 116 117 118 119
NpuOpRunner &NpuOpRunner::SetType(const std::string &name) {
  op_type_ = name;
  return *this;
}

120
NpuOpRunner &NpuOpRunner::AddAttr(const std::string &name,
121
                                  const NPUAttribute &attr) {
122 123 124
  if (!attr_) {
    attr_ = aclopCreateAttr();
  }
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
  if (attr.type() == typeid(bool)) {
    PADDLE_ENFORCE_NPU_SUCCESS(
        aclopSetAttrBool(attr_, name.c_str(), BOOST_GET_CONST(bool, attr)));
  } else if (attr.type() == typeid(int)) {
    PADDLE_ENFORCE_NPU_SUCCESS(
        aclopSetAttrInt(attr_, name.c_str(), BOOST_GET_CONST(int, attr)));

  } else if (attr.type() == typeid(int64_t)) {
    PADDLE_ENFORCE_NPU_SUCCESS(
        aclopSetAttrInt(attr_, name.c_str(), BOOST_GET_CONST(int64_t, attr)));
  } else if (attr.type() == typeid(float)) {
    PADDLE_ENFORCE_NPU_SUCCESS(
        aclopSetAttrFloat(attr_, name.c_str(), BOOST_GET_CONST(float, attr)));
  } else if (attr.type() == typeid(std::vector<bool>)) {
    auto a = BOOST_GET_CONST(std::vector<bool>, attr);
    std::vector<uint8_t> cast_a;
    for (auto it : a) {
      cast_a.push_back(static_cast<uint8_t>(it));
    }
    PADDLE_ENFORCE_NPU_SUCCESS(aclopSetAttrListBool(
        attr_, name.c_str(), cast_a.size(), cast_a.data()));
  } else if (attr.type() == typeid(std::vector<int>)) {
    auto a = BOOST_GET_CONST(std::vector<int>, attr);
    std::vector<int64_t> cast_a;
    for (auto it : a) {
      cast_a.push_back(static_cast<int64_t>(it));
    }
    PADDLE_ENFORCE_NPU_SUCCESS(
        aclopSetAttrListInt(attr_, name.c_str(), cast_a.size(), cast_a.data()));
  } else if (attr.type() == typeid(std::vector<int64_t>)) {
    auto a = BOOST_GET_CONST(std::vector<int64_t>, attr);
    PADDLE_ENFORCE_NPU_SUCCESS(
        aclopSetAttrListInt(attr_, name.c_str(), a.size(), a.data()));
  } else if (attr.type() == typeid(std::vector<float>)) {
    auto a = BOOST_GET_CONST(std::vector<float>, attr);
    PADDLE_ENFORCE_NPU_SUCCESS(
        aclopSetAttrListFloat(attr_, name.c_str(), a.size(), a.data()));
  } else if (attr.type() == typeid(std::string)) {
    auto a = BOOST_GET_CONST(std::string, attr);
    PADDLE_ENFORCE_NPU_SUCCESS(
        aclopSetAttrString(attr_, name.c_str(), a.c_str()));
  } else if (attr.type() == typeid(std::vector<std::string>)) {
    auto a = BOOST_GET_CONST(std::vector<std::string>, attr);
    std::vector<const char *> s;
    for (auto &it : a) {
      s.push_back(it.data());
    }
    PADDLE_ENFORCE_NPU_SUCCESS(
        aclopSetAttrListString(attr_, name.c_str(), s.size(), s.data()));
174 175 176 177 178 179 180 181 182 183
  } else if (attr.type() == typeid(std::vector<std::vector<int64_t>>)) {
    auto a = BOOST_GET_CONST(std::vector<std::vector<int64_t>>, attr);
    std::vector<int64_t *> data;
    std::vector<int> num;
    for (auto &&v : a) {
      data.push_back(v.data());
      num.push_back(v.size());
    }
    PADDLE_ENFORCE_NPU_SUCCESS(aclopSetAttrListListInt(
        attr_, name.c_str(), data.size(), num.data(), data.data()));
184 185 186 187 188 189 190
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Can not convert attribubte '%s' to convert to aclopAttr", name));
  }
  return *this;
}

191
NpuOpRunner &NpuOpRunner::AddAttrs(const NPUAttributeMap &attrs) {
192 193 194 195 196 197 198 199 200 201 202 203 204 205
  for (const auto &pair : attrs) {
    AddAttr(pair.first, pair.second);
  }
  return *this;
}

NpuOpRunner &NpuOpRunner::AddInput(const Tensor &tensor) {
  // create aclTensorDesc
  input_descs_.emplace_back(CreateTensorDesc(tensor));
  // create aclDataBuffer
  input_buffers_.emplace_back(CreateDataBuffer(tensor));
  return *this;
}

206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
NpuOpRunner &NpuOpRunner::AddInput(const Tensor &tensor, aclMemType mem_type) {
  // create aclTensorDesc
  input_descs_.emplace_back(CreateTensorDesc(tensor, mem_type));
  // create aclDataBuffer
  input_buffers_.emplace_back(CreateDataBuffer(tensor));
  return *this;
}

NpuOpRunner &NpuOpRunner::AddInput(std::vector<int32_t> &&dims) {
  platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
  auto *dev_ctx =
      static_cast<platform::CPUDeviceContext *>(pool.Get(platform::CPUPlace()));
  Tensor host_tensor;
  TensorFromVector(dims, *dev_ctx, &host_tensor);
  host_tensors_.emplace_back(host_tensor);

  // create aclTensorDesc
  input_descs_.emplace_back(CreateTensorDesc(host_tensor, ACL_MEMTYPE_HOST));
  // create aclDataBuffer
  input_buffers_.emplace_back(CreateDataBuffer(host_tensor));

  return *this;
}

NpuOpRunner &NpuOpRunner::AddInput(std::vector<int64_t> &&dims) {
  platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
  auto *dev_ctx =
      static_cast<platform::CPUDeviceContext *>(pool.Get(platform::CPUPlace()));
  Tensor host_tensor;
  TensorFromVector(dims, *dev_ctx, &host_tensor);
  host_tensors_.emplace_back(host_tensor);

  // create aclTensorDesc
  input_descs_.emplace_back(CreateTensorDesc(host_tensor, ACL_MEMTYPE_HOST));
  // create aclDataBuffer
  input_buffers_.emplace_back(CreateDataBuffer(host_tensor));

  return *this;
}

246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
NpuOpRunner &NpuOpRunner::AddInput(std::vector<float> &&values) {
  platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
  auto *dev_ctx =
      static_cast<platform::CPUDeviceContext *>(pool.Get(platform::CPUPlace()));
  Tensor host_tensor;
  TensorFromVector(values, *dev_ctx, &host_tensor);
  host_tensors_.emplace_back(host_tensor);

  // create aclTensorDesc
  input_descs_.emplace_back(CreateTensorDesc(host_tensor, ACL_MEMTYPE_HOST));
  // create aclDataBuffer
  input_buffers_.emplace_back(CreateDataBuffer(host_tensor));

  return *this;
}

NpuOpRunner &NpuOpRunner::AddInput(std::vector<double> &&values) {
  platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
  auto *dev_ctx =
      static_cast<platform::CPUDeviceContext *>(pool.Get(platform::CPUPlace()));
  Tensor host_tensor;
  TensorFromVector(values, *dev_ctx, &host_tensor);
  host_tensors_.emplace_back(host_tensor);

  // create aclTensorDesc
  input_descs_.emplace_back(CreateTensorDesc(host_tensor, ACL_MEMTYPE_HOST));
  // create aclDataBuffer
  input_buffers_.emplace_back(CreateDataBuffer(host_tensor));

  return *this;
}

278 279 280 281 282 283 284 285 286
NpuOpRunner &NpuOpRunner::AddOutput(const Tensor &tensor) {
  // create aclTensorDesc
  output_descs_.emplace_back(CreateTensorDesc(tensor));
  // create aclDataBuffer
  output_buffers_.emplace_back(CreateDataBuffer(tensor));
  return *this;
}

NpuOpRunner &NpuOpRunner::AddInputs(const std::vector<Tensor> &tensors) {
L
Leo Chen 已提交
287 288
  input_descs_.reserve(tensors.size());
  input_buffers_.reserve(tensors.size());
289 290 291 292 293 294 295 296 297
  for (auto tensor : tensors) {
    // create aclTensorDesc
    input_descs_.emplace_back(CreateTensorDesc(tensor));
    // create aclDataBuffer
    input_buffers_.emplace_back(CreateDataBuffer(tensor));
  }
  return *this;
}

298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
// NOTE(zhiqiu): For operators whose input is a list (such as concat, stack),
// It is needed to set the name of each input tensor.
NpuOpRunner &NpuOpRunner::AddInputNames(const std::vector<std::string> &names) {
  PADDLE_ENFORCE_EQ(names.size(), input_descs_.size(),
                    platform::errors::InvalidArgument(
                        "The size of input names should be "
                        "equal to the size of input descs, but got the size "
                        "of input names is %d, the size of input descs is %d.",
                        names.size(), input_descs_.size()));
  for (size_t i = 0; i < names.size(); ++i) {
    aclSetTensorDescName(input_descs_[i], names[i].c_str());
  }
  return *this;
}

313
NpuOpRunner &NpuOpRunner::AddOutputs(const std::vector<Tensor> &tensors) {
L
Leo Chen 已提交
314 315
  output_descs_.reserve(tensors.size());
  output_buffers_.reserve(tensors.size());
316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
  for (auto tensor : tensors) {
    // create aclTensorDesc
    output_descs_.emplace_back(CreateTensorDesc(tensor));
    // create aclDataBuffer
    output_buffers_.emplace_back(CreateDataBuffer(tensor));
  }
  return *this;
}

aclTensorDesc *NpuOpRunner::GetInputDesc(size_t index) {
  PADDLE_ENFORCE_LT(index, input_descs_.size(),
                    platform::errors::OutOfRange(
                        "The index should be less than the size of inputs of "
                        "operator %s, but got index is %d and size is %d",
                        Type(), index, input_descs_.size()));
  return input_descs_[index];
}

aclTensorDesc *NpuOpRunner::GetOutputDesc(size_t index) {
  PADDLE_ENFORCE_LT(index, output_descs_.size(),
                    platform::errors::OutOfRange(
                        "The index should be less than the size of output of "
                        "operator %s, but got index is %d and size is %d",
                        Type(), index, output_descs_.size()));
  return output_descs_[index];
}

std::vector<aclTensorDesc *> &NpuOpRunner::GetInputDescs() {
  return input_descs_;
}

std::vector<aclTensorDesc *> &NpuOpRunner::GetOutputDescs() {
  return output_descs_;
}

std::vector<aclDataBuffer *> &NpuOpRunner::GetInputBuffers() {
  return input_buffers_;
}

std::vector<aclDataBuffer *> &NpuOpRunner::GetOutputBuffers() {
  return output_buffers_;
}

359 360
aclTensorDesc *NpuOpRunner::CreateTensorDesc(Tensor tensor,
                                             aclMemType mem_type) {
361 362 363
  auto dtype = ConvertToNpuDtype(tensor.type());
  auto format = ConvertToNpuFormat(tensor.layout());
  auto dims = framework::vectorize(tensor.dims());
P
pangyoki 已提交
364 365 366 367 368 369 370 371
  int size = dims.size();
  // TODO(pangyoki): `keep_prob` used in `DropOutGenMask` NPU
  // OP must be a scalar with shape[0]. At present, the shape
  // of the `prob` Tensor of this OP is forced to be set to 0
  // in `npu_op_runner.cc`, which needs to be optimized later.
  if (op_type_ == "DropOutGenMask" && size == 1 && *(dims.data()) == 1) {
    size = 0;
  }
372

373 374 375
  VLOG(4) << "NPU dtype:" << dtype << " "
          << "rank:" << dims.size() << " dims:" << tensor.dims()
          << " format:" << format;
376

P
pangyoki 已提交
377
  auto *desc = aclCreateTensorDesc(dtype, size, dims.data(), format);
378 379
  PADDLE_ENFORCE_NOT_NULL(
      desc, platform::errors::External("Call aclCreateTensorDesc failed."));
380
  PADDLE_ENFORCE_NPU_SUCCESS(aclSetTensorStorageFormat(desc, format));
P
pangyoki 已提交
381
  PADDLE_ENFORCE_NPU_SUCCESS(aclSetTensorStorageShape(desc, size, dims.data()));
382 383 384
  if (mem_type == ACL_MEMTYPE_HOST) {
    PADDLE_ENFORCE_NPU_SUCCESS(aclSetTensorPlaceMent(desc, mem_type));
  }
385 386 387 388 389
  return desc;
}

aclDataBuffer *NpuOpRunner::CreateDataBuffer(Tensor tensor) {
  void *ptr = tensor.data<void>();
390
  VLOG(4) << "NPU ptr: " << ptr << ", size: " << tensor.memory_size();
391 392 393 394 395 396
  auto *buffer = aclCreateDataBuffer(ptr, tensor.memory_size());
  PADDLE_ENFORCE_NOT_NULL(
      buffer, platform::errors::External("Call aclCreateDataBuffer failed."));
  return buffer;
}

L
Leo Chen 已提交
397
void NpuOpRunner::Run(aclrtStream stream) const {
398 399 400 401
  if (!stream) {
    VLOG(4) << "Run with default current npu stream: " << stream;
    stream = GetCurrentNPUStream();
  }
L
Leo Chen 已提交
402
  VLOG(5) << "NpuOpRunner(" << this << ") Run:";
403 404 405 406
  VLOG(4) << "op_type: " << op_type_;
  VLOG(4) << "input_desc.size: " << input_descs_.size();
  VLOG(4) << "output_desc.size: " << output_descs_.size();
  VLOG(4) << "attr: " << attr_;
407 408
  VLOG(4) << "stream: " << stream;

A
Aganlengzi 已提交
409 410 411 412 413 414
  if (!FLAGS_npu_precision_mode.empty()) {
    PADDLE_ENFORCE_NPU_SUCCESS(
        aclSetCompileopt(ACL_PRECISION_MODE, FLAGS_npu_precision_mode.c_str()));
    VLOG(4) << "set ACL_PRECISION_MODE: " << FLAGS_npu_precision_mode;
  }

415 416 417 418 419 420 421 422
  aclError ret = aclopCompileAndExecute(
      op_type_.c_str(), input_descs_.size(), input_descs_.data(),
      input_buffers_.data(), output_descs_.size(), output_descs_.data(),
      output_buffers_.data(), attr_, ACL_ENGINE_SYS, ACL_COMPILE_SYS, NULL,
      stream);
  VLOG(4) << "after aclopCompileAndExecute: " << ret;
  PADDLE_ENFORCE_NPU_SUCCESS(ret);
}
423

424 425
}  // namespace operators
}  // namespace paddle