selected_rows_functor.cu 21.2 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

T
typhoonzero 已提交
15
#include <set>
16
#include <vector>
T
typhoonzero 已提交
17

Y
Yi Wang 已提交
18 19
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/operators/math/selected_rows_functor.h"
20
#include "paddle/fluid/platform/device/gpu/gpu_primitives.h"
C
chengduo 已提交
21
#include "paddle/fluid/platform/float16.h"
22 23 24 25 26

namespace paddle {
namespace operators {
namespace math {
template <typename T>
Q
QI JUN 已提交
27 28
struct SelectedRowsAdd<platform::CUDADeviceContext, T> {
  void operator()(const platform::CUDADeviceContext& context,
29 30 31 32
                  const framework::SelectedRows& input1,
                  const framework::SelectedRows& input2,
                  framework::SelectedRows* output) {
    auto in1_height = input1.height();
33 34 35 36 37 38
    PADDLE_ENFORCE_EQ(
        in1_height, input2.height(),
        platform::errors::InvalidArgument("The two inputs height must be equal."
                                          "But recieved first input height  = "
                                          "[%d], second input height = [%d]",
                                          in1_height, input2.height()));
39 40
    output->set_height(in1_height);

D
dzhwinter 已提交
41
    framework::Vector<int64_t> in1_rows(input1.rows());
42 43 44 45 46 47 48 49 50 51 52 53 54 55
    auto& in2_rows = input2.rows();
    std::vector<int64_t> out_rows;
    out_rows.reserve(in1_rows.size() + in2_rows.size());

    // concat rows
    out_rows.insert(out_rows.end(), in1_rows.begin(), in1_rows.end());
    out_rows.insert(out_rows.end(), in2_rows.begin(), in2_rows.end());
    output->set_rows(out_rows);

    auto* out_value = output->mutable_value();
    auto& in1_value = input1.value();
    auto& in2_value = input2.value();

    auto in1_row_numel = in1_value.numel() / in1_rows.size();
56 57 58 59 60 61 62 63 64 65 66 67
    PADDLE_ENFORCE_EQ(
        in1_row_numel, in2_value.numel() / in2_rows.size(),
        platform::errors::InvalidArgument(
            "The two inputs width must be equal."
            "But recieved first input width = [%d], second input width = [%d]",
            in1_row_numel, in2_value.numel() / in2_rows.size()));
    PADDLE_ENFORCE_EQ(
        in1_row_numel, out_value->numel() / out_rows.size(),
        platform::errors::InvalidArgument(
            "The input and oupput width must be equal."
            "But recieved input width = [%d], output width = [%d]",
            in1_row_numel, out_value->numel() / out_rows.size()));
68 69 70 71 72

    auto* out_data = out_value->data<T>();
    auto* in1_data = in1_value.data<T>();

    auto in1_place = input1.place();
73 74 75
    PADDLE_ENFORCE_EQ(platform::is_gpu_place(in1_place), true,
                      platform::errors::InvalidArgument(
                          "The running enviroment is not on the GPU place."));
76
    auto in2_place = input2.place();
77 78 79
    PADDLE_ENFORCE_EQ(platform::is_gpu_place(in2_place), true,
                      platform::errors::InvalidArgument(
                          "The running enviroment is not on the GPU place."));
80
    auto out_place = context.GetPlace();
81 82 83
    PADDLE_ENFORCE_EQ(platform::is_gpu_place(out_place), true,
                      platform::errors::InvalidArgument(
                          "The running enviroment is not on the GPU place."));
84

85
    memory::Copy(out_place, out_data, in1_place, in1_data,
86
                 in1_value.numel() * sizeof(T), context.stream());
87 88

    auto* in2_data = in2_value.data<T>();
89
    memory::Copy(out_place, out_data + in1_value.numel(), in2_place, in2_data,
Q
QI JUN 已提交
90
                 in2_value.numel() * sizeof(T), context.stream());
91 92 93
  }
};

Q
QI JUN 已提交
94 95
template struct SelectedRowsAdd<platform::CUDADeviceContext, float>;
template struct SelectedRowsAdd<platform::CUDADeviceContext, double>;
96 97

namespace {
Q
QI JUN 已提交
98
template <typename T, int block_size>
99 100
__global__ void SelectedRowsAddTensorKernel(const T* selected_rows,
                                            const int64_t* rows, T* tensor_out,
Q
QI JUN 已提交
101
                                            int64_t row_numel) {
C
chengduo 已提交
102
  const int ty = blockIdx.x;
103 104 105 106 107 108 109 110 111
  int tid = threadIdx.x;

  selected_rows += ty * row_numel;
  tensor_out += rows[ty] * row_numel;

  for (int index = tid; index < row_numel; index += block_size) {
    // Since index in rows of SelectedRows can be duplicate, we can not use
    // tensor_out[index] += selected_rows[index]; Instead, we have to use
    // AtomicAdd to avoid concurrent write error.
Q
qijun 已提交
112
    paddle::platform::CudaAtomicAdd(tensor_out + index, selected_rows[index]);
113 114 115 116 117
  }
}
}  // namespace

template <typename T>
Q
QI JUN 已提交
118 119
struct SelectedRowsAddTensor<platform::CUDADeviceContext, T> {
  void operator()(const platform::CUDADeviceContext& context,
120 121 122 123 124
                  const framework::SelectedRows& input1,
                  const framework::Tensor& input2, framework::Tensor* output) {
    auto in1_height = input1.height();
    auto in2_dims = input2.dims();
    auto out_dims = output->dims();
125 126 127 128 129 130 131 132 133 134 135 136
    PADDLE_ENFORCE_EQ(
        in1_height, in2_dims[0],
        platform::errors::InvalidArgument(
            "The two inputs height must be equal."
            "But recieved first input height = [%d], first input height = [%d]",
            in1_height, in2_dims[0]));
    PADDLE_ENFORCE_EQ(
        in1_height, out_dims[0],
        platform::errors::InvalidArgument(
            "The input and output height must be equal."
            "But recieved input height = [%d], output height = [%d]",
            in1_height, out_dims[0]));
137 138

    auto& in1_value = input1.value();
139
    auto& in1_rows = input1.rows();
140 141

    int64_t in1_row_numel = in1_value.numel() / in1_rows.size();
142 143 144 145 146 147 148 149 150 151 152 153
    PADDLE_ENFORCE_EQ(
        in1_row_numel, input2.numel() / in1_height,
        platform::errors::InvalidArgument(
            "The two inputs width must be equal."
            "But recieved first input width = [%d], second input width = [%d]",
            in1_row_numel, input2.numel() / in1_height));
    PADDLE_ENFORCE_EQ(
        in1_row_numel, output->numel() / in1_height,
        platform::errors::InvalidArgument(
            "The input and output width must be equal."
            "But recieved input width = [%d], output width = [%d]",
            in1_row_numel, output->numel() / in1_height));
154 155 156 157 158

    auto* in1_data = in1_value.data<T>();
    auto* in2_data = input2.data<T>();
    auto* out_data = output->data<T>();

Q
QI JUN 已提交
159
    SetConstant<platform::CUDADeviceContext, T> functor;
C
chengduo 已提交
160
    functor(context, output, static_cast<T>(0));
161

Q
QI JUN 已提交
162
    const int block_size = 256;
163
    dim3 threads(block_size, 1);
C
chengduo 已提交
164
    dim3 grid(in1_rows.size(), 1);
Q
QI JUN 已提交
165 166
    SelectedRowsAddTensorKernel<
        T, block_size><<<grid, threads, 0, context.stream()>>>(
Y
Yu Yang 已提交
167 168
        in1_data, in1_rows.CUDAData(context.GetPlace()), out_data,
        in1_row_numel);
169 170 171

    auto out_eigen = framework::EigenVector<T>::Flatten(*output);
    auto in2_eigen = framework::EigenVector<T>::Flatten(input2);
Q
QI JUN 已提交
172
    out_eigen.device(*context.eigen_device()) = out_eigen + in2_eigen;
173 174 175
  }
};

Q
QI JUN 已提交
176 177
template struct SelectedRowsAddTensor<platform::CUDADeviceContext, float>;
template struct SelectedRowsAddTensor<platform::CUDADeviceContext, double>;
C
chengduo 已提交
178 179 180
template struct SelectedRowsAdd<platform::CUDADeviceContext, platform::float16>;
template struct SelectedRowsAddTensor<platform::CUDADeviceContext,
                                      platform::float16>;
Q
QI JUN 已提交
181 182

template <typename T>
Q
QI JUN 已提交
183 184
struct SelectedRowsAddTo<platform::CUDADeviceContext, T> {
  void operator()(const platform::CUDADeviceContext& context,
Q
QI JUN 已提交
185 186 187 188
                  const framework::SelectedRows& input1,
                  const int64_t input2_offset,
                  framework::SelectedRows* input2) {
    auto in1_height = input1.height();
189 190 191 192 193 194
    PADDLE_ENFORCE_EQ(
        in1_height, input2->height(),
        platform::errors::InvalidArgument("The two inputs height must be equal."
                                          "But recieved first input height = "
                                          "[%d], second input height = [%d]",
                                          in1_height, input2->height()));
Q
QI JUN 已提交
195

196
    auto& in1_rows = input1.rows();
Q
QI JUN 已提交
197 198 199 200 201 202
    auto& in2_rows = *(input2->mutable_rows());

    auto& in1_value = input1.value();
    auto* in2_value = input2->mutable_value();

    // concat rows
Y
Fix CI  
Yu Yang 已提交
203 204 205
    if (in1_rows.size()) {
      in2_rows.Extend(in1_rows.begin(), in1_rows.end());
    }
Q
QI JUN 已提交
206 207

    auto in1_place = input1.place();
208 209 210
    PADDLE_ENFORCE_EQ(platform::is_gpu_place(in1_place), true,
                      platform::errors::InvalidArgument(
                          "The running enviroment is not on the GPU place."));
Q
QI JUN 已提交
211
    auto in2_place = input2->place();
212 213 214
    PADDLE_ENFORCE_EQ(platform::is_gpu_place(in1_place), true,
                      platform::errors::InvalidArgument(
                          "The running enviroment is not on the GPU place."));
Q
QI JUN 已提交
215 216 217

    auto* in1_data = in1_value.data<T>();
    auto* in2_data = in2_value->data<T>();
218
    memory::Copy(in2_place, in2_data + input2_offset, in1_place, in1_data,
Q
QI JUN 已提交
219
                 in1_value.numel() * sizeof(T), context.stream());
Q
QI JUN 已提交
220 221 222
  }
};

Q
QI JUN 已提交
223 224 225 226
template struct SelectedRowsAddTo<platform::CUDADeviceContext, float>;
template struct SelectedRowsAddTo<platform::CUDADeviceContext, double>;
template struct SelectedRowsAddTo<platform::CUDADeviceContext, int>;
template struct SelectedRowsAddTo<platform::CUDADeviceContext, int64_t>;
C
chengduo 已提交
227 228
template struct SelectedRowsAddTo<platform::CUDADeviceContext,
                                  platform::float16>;
Q
QI JUN 已提交
229 230 231 232 233 234 235

namespace {
template <typename T, int block_size>
__global__ void SelectedRowsAddToTensorKernel(const T* selected_rows,
                                              const int64_t* rows,
                                              T* tensor_out,
                                              int64_t row_numel) {
C
chengduo 已提交
236
  const int ty = blockIdx.x;
Q
QI JUN 已提交
237 238 239 240 241 242 243 244 245 246 247 248 249 250
  int tid = threadIdx.x;

  selected_rows += ty * row_numel;
  tensor_out += rows[ty] * row_numel;

  for (int index = tid; index < row_numel; index += block_size) {
    // Since index in rows of SelectedRows can be duplicate, we have to use
    // Atomic Operation to avoid concurrent write error.
    paddle::platform::CudaAtomicAdd(tensor_out + index, selected_rows[index]);
  }
}
}  // namespace

template <typename T>
Q
QI JUN 已提交
251 252
struct SelectedRowsAddToTensor<platform::CUDADeviceContext, T> {
  void operator()(const platform::CUDADeviceContext& context,
Q
QI JUN 已提交
253 254 255 256
                  const framework::SelectedRows& input1,
                  framework::Tensor* input2) {
    auto in1_height = input1.height();
    auto in2_dims = input2->dims();
257 258 259 260 261 262
    PADDLE_ENFORCE_EQ(
        in1_height, in2_dims[0],
        platform::errors::InvalidArgument("The two inputs height must be equal."
                                          "But recieved first input height = "
                                          "[%d], second input height = [%d]",
                                          in1_height, in2_dims[0]));
Q
QI JUN 已提交
263 264

    auto& in1_value = input1.value();
265
    auto& in1_rows = input1.rows();
Q
QI JUN 已提交
266 267

    int64_t in1_row_numel = in1_value.numel() / in1_rows.size();
268 269 270 271 272 273
    PADDLE_ENFORCE_EQ(
        in1_row_numel, input2->numel() / in1_height,
        platform::errors::InvalidArgument(
            "The two inputs width must be equal."
            "But recieved first input width = [%d], second input width = [%d]",
            in1_row_numel, input2->numel() / in1_height));
Q
QI JUN 已提交
274 275 276 277 278

    auto* in1_data = in1_value.data<T>();
    auto* in2_data = input2->data<T>();
    const int block_size = 256;
    dim3 threads(block_size, 1);
C
chengduo 已提交
279
    dim3 grid(in1_rows.size(), 1);
Q
QI JUN 已提交
280 281
    SelectedRowsAddToTensorKernel<
        T, block_size><<<grid, threads, 0, context.stream()>>>(
Y
Yu Yang 已提交
282 283
        in1_data, in1_rows.CUDAData(context.GetPlace()), in2_data,
        in1_row_numel);
Q
QI JUN 已提交
284 285 286
  }
};

Q
QI JUN 已提交
287 288 289 290
template struct SelectedRowsAddToTensor<platform::CUDADeviceContext, float>;
template struct SelectedRowsAddToTensor<platform::CUDADeviceContext, double>;
template struct SelectedRowsAddToTensor<platform::CUDADeviceContext, int>;
template struct SelectedRowsAddToTensor<platform::CUDADeviceContext, int64_t>;
C
chengduo 已提交
291 292
template struct SelectedRowsAddToTensor<platform::CUDADeviceContext,
                                        platform::float16>;
T
typhoonzero 已提交
293 294 295 296 297 298 299

namespace scatter {

template <typename T, int block_size>
__global__ void MergeAddKernel(const T* input, const int64_t* input_rows,
                               T* out, const int64_t* out_rows,
                               size_t out_rows_size, int64_t row_numel) {
S
sneaxiy 已提交
300
  const int ty = blockIdx.x;
T
typhoonzero 已提交
301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
  int tid = threadIdx.x;
  __shared__ size_t out_idx;

  if (tid == 0) {
    for (size_t i = 0; i < out_rows_size; i++) {
      if (input_rows[ty] == out_rows[i]) {
        out_idx = i;
      }
    }
  }

  __syncthreads();

  input += ty * row_numel;
  out += out_idx * row_numel;
  for (int index = tid; index < row_numel; index += block_size) {
    paddle::platform::CudaAtomicAdd(out + index, input[index]);
  }
}

template <typename T>
T
typhoonzero 已提交
322 323
struct MergeAdd<platform::CUDADeviceContext, T> {
  framework::SelectedRows operator()(const platform::CUDADeviceContext& context,
324 325
                                     const framework::SelectedRows& input,
                                     const bool sorted_result = false) {
T
wip  
typhoonzero 已提交
326
    framework::SelectedRows out;
S
sneaxiy 已提交
327 328 329 330 331 332
    (*this)(context, input, &out);
    return out;
  }

  void operator()(const platform::CUDADeviceContext& context,
                  const framework::SelectedRows& input,
M
minqiyang 已提交
333 334
                  framework::SelectedRows* output,
                  const bool sorted_result = false) {
D
dzhwinter 已提交
335
    framework::Vector<int64_t> input_rows(input.rows());
Q
Qiao Longfei 已提交
336 337 338 339 340
    if (input_rows.size() == 0) {
      return;
    }

    framework::SelectedRows& out = *output;
T
typhoonzero 已提交
341
    std::set<int64_t> row_set(input_rows.begin(), input_rows.end());
Q
Qiao Longfei 已提交
342 343
    std::vector<int64_t> merge_rows_cpu(row_set.begin(), row_set.end());
    framework::Vector<int64_t> merge_rows(merge_rows_cpu);
T
typhoonzero 已提交
344 345

    auto input_width = input.value().dims()[1];
T
wip  
typhoonzero 已提交
346 347 348 349

    out.set_rows(merge_rows);
    out.set_height(input.height());
    out.mutable_value()->mutable_data<T>(
T
typhoonzero 已提交
350 351 352 353 354
        framework::make_ddim(
            {static_cast<int64_t>(merge_rows.size()), input_width}),
        context.GetPlace());

    math::SetConstant<platform::CUDADeviceContext, T> constant_functor;
C
chengduo 已提交
355
    constant_functor(context, out.mutable_value(), static_cast<T>(0));
T
typhoonzero 已提交
356

T
wip  
typhoonzero 已提交
357
    auto* out_data = out.mutable_value()->data<T>();
T
typhoonzero 已提交
358 359 360 361
    auto* input_data = input.value().data<T>();

    const int block_size = 256;
    dim3 threads(block_size, 1);
S
sneaxiy 已提交
362
    dim3 grid1(input_rows.size(), 1);
T
typhoonzero 已提交
363

S
sneaxiy 已提交
364
    MergeAddKernel<T, 256><<<grid1, threads, 0, context.stream()>>>(
Y
Yu Yang 已提交
365 366 367
        input_data, input_rows.CUDAData(context.GetPlace()), out_data,
        out.mutable_rows()->CUDAMutableData(context.GetPlace()),
        out.rows().size(), input_width);
T
typhoonzero 已提交
368
  }
369 370 371

  void operator()(const platform::CUDADeviceContext& context,
                  const std::vector<const framework::SelectedRows*>& inputs,
M
minqiyang 已提交
372 373
                  framework::SelectedRows* output,
                  const bool sorted_result = false) {
374
    if (inputs.size() == 0) {
M
minqiyang 已提交
375
      VLOG(3) << "no input! return";
376 377 378 379
      return;
    }
    const framework::SelectedRows* has_value_input = nullptr;
    for (auto* in : inputs) {
Q
Qiao Longfei 已提交
380
      if (in->rows().size() > 0) {
381 382 383 384 385
        has_value_input = in;
        break;
      }
    }
    if (has_value_input == nullptr) {
M
minqiyang 已提交
386
      VLOG(3) << "no input has value! just return" << std::endl;
387 388 389 390
      return;
    }
    auto input_width = has_value_input->value().dims()[1];
    auto input_height = has_value_input->height();
391 392 393
    framework::SelectedRows& out = *output;
    std::set<int64_t> merged_row_set;
    for (auto* input : inputs) {
Q
Qiao Longfei 已提交
394
      if (input->rows().size() == 0) {
395 396
        continue;
      }
397
      PADDLE_ENFORCE_EQ(input_width, input->value().dims()[1],
398 399 400
                        platform::errors::InvalidArgument(
                            "All input should have same "
                            "dimension except for the first one."));
401
      PADDLE_ENFORCE_EQ(input_height, input->height(),
402 403
                        platform::errors::InvalidArgument(
                            "All input should have same height."));
404 405
      merged_row_set.insert(input->rows().begin(), input->rows().end());
    }
Q
Qiao Longfei 已提交
406
    std::vector<int64_t> merge_rows_cpu(merged_row_set.begin(),
Q
format  
Qiao Longfei 已提交
407
                                        merged_row_set.end());
Q
Qiao Longfei 已提交
408
    framework::Vector<int64_t> merge_rows(merge_rows_cpu);
409 410 411 412 413 414 415 416

    out.set_rows(merge_rows);
    out.set_height(input_height);
    out.mutable_value()->mutable_data<T>(
        framework::make_ddim(
            {static_cast<int64_t>(merge_rows.size()), input_width}),
        context.GetPlace());

Q
Qiao Longfei 已提交
417
    math::SetConstant<platform::CUDADeviceContext, T> constant_functor;
C
chengduo 已提交
418
    constant_functor(context, out.mutable_value(), static_cast<T>(0));
419 420 421 422 423 424 425

    auto* out_data = out.mutable_value()->data<T>();

    const int block_size = 256;
    dim3 threads(block_size, 1);

    for (auto* input : inputs) {
Q
Qiao Longfei 已提交
426
      if (input->rows().size() == 0) {
Q
Qiao Longfei 已提交
427 428
        continue;
      }
429 430
      auto* input_data = input->value().data<T>();
      auto& input_rows = input->rows();
431 432 433 434 435 436 437 438
      dim3 grid1(input_rows.size(), 1);

      MergeAddKernel<T, 256><<<grid1, threads, 0, context.stream()>>>(
          input_data, input_rows.CUDAData(context.GetPlace()), out_data,
          out.mutable_rows()->CUDAMutableData(context.GetPlace()),
          out.rows().size(), input_width);
    }
  }
T
typhoonzero 已提交
439 440
};

T
typhoonzero 已提交
441 442 443 444
template struct MergeAdd<platform::CUDADeviceContext, float>;
template struct MergeAdd<platform::CUDADeviceContext, double>;
template struct MergeAdd<platform::CUDADeviceContext, int>;
template struct MergeAdd<platform::CUDADeviceContext, int64_t>;
C
chengduo 已提交
445
template struct MergeAdd<platform::CUDADeviceContext, platform::float16>;
446 447 448
template struct MergeAdd<platform::CUDADeviceContext, platform::complex<float>>;
template struct MergeAdd<platform::CUDADeviceContext,
                         platform::complex<double>>;
T
wip  
typhoonzero 已提交
449 450 451 452 453

template <typename T, int block_size>
__global__ void UpdateToTensorKernel(const T* selected_rows,
                                     const int64_t* rows, const ScatterOps& op,
                                     T* tensor_out, int64_t row_numel) {
C
chengduo 已提交
454
  const int ty = blockIdx.x;
T
wip  
typhoonzero 已提交
455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499
  int tid = threadIdx.x;

  selected_rows += ty * row_numel;
  tensor_out += rows[ty] * row_numel;
  // FIXME(typhoonzero): use macro fix the below messy code.
  switch (op) {
    case ScatterOps::ASSIGN:
      for (int index = tid; index < row_numel; index += block_size) {
        tensor_out[index] = selected_rows[index];
      }
      break;
    case ScatterOps::ADD:
      for (int index = tid; index < row_numel; index += block_size) {
        tensor_out[index] += selected_rows[index];
      }
      break;
    case ScatterOps::SUB:
      for (int index = tid; index < row_numel; index += block_size) {
        tensor_out[index] -= selected_rows[index];
      }
      break;
    case ScatterOps::SUBBY:
      for (int index = tid; index < row_numel; index += block_size) {
        tensor_out[index] = selected_rows[index] - tensor_out[index];
      }
      break;
    case ScatterOps::MUL:
      for (int index = tid; index < row_numel; index += block_size) {
        tensor_out[index] *= selected_rows[index];
      }
      break;
    case ScatterOps::DIV:
      for (int index = tid; index < row_numel; index += block_size) {
        tensor_out[index] /= selected_rows[index];
      }
      break;
    case ScatterOps::DIVBY:
      for (int index = tid; index < row_numel; index += block_size) {
        tensor_out[index] = selected_rows[index] / tensor_out[index];
      }
      break;
  }
}

template <typename T>
T
typhoonzero 已提交
500 501 502 503
struct UpdateToTensor<platform::CUDADeviceContext, T> {
  void operator()(const platform::CUDADeviceContext& context,
                  const ScatterOps& op, const framework::SelectedRows& input1,
                  framework::Tensor* input2) {
T
wip  
typhoonzero 已提交
504 505
    // NOTE: Use SelectedRowsAddToTensor for better performance
    //       no additional MergeAdd called.
T
typhoonzero 已提交
506 507
    MergeAdd<platform::CUDADeviceContext, T> merge_func;
    auto merged_in1 = merge_func(context, input1);
T
wip  
typhoonzero 已提交
508 509 510

    auto in1_height = merged_in1.height();
    auto in2_dims = input2->dims();
511 512 513 514 515 516
    PADDLE_ENFORCE_EQ(
        in1_height, in2_dims[0],
        platform::errors::InvalidArgument("The two inputs height must be equal."
                                          "But recieved first input height = "
                                          "[%d], second input height = [%d]",
                                          in1_height, in2_dims[0]));
T
wip  
typhoonzero 已提交
517 518 519 520 521

    auto& in1_value = merged_in1.value();
    auto& in1_rows = merged_in1.rows();

    int64_t in1_row_numel = in1_value.numel() / in1_rows.size();
522 523 524 525 526 527
    PADDLE_ENFORCE_EQ(
        in1_row_numel, input2->numel() / in1_height,
        platform::errors::InvalidArgument(
            "The two inputs width must be equal."
            "But recieved first input width = [%d], second input width = [%d]",
            in1_row_numel, input2->numel() / in1_height));
T
wip  
typhoonzero 已提交
528

T
typhoonzero 已提交
529 530
    auto* in1_data = in1_value.template data<T>();
    auto* in2_data = input2->data<T>();
T
wip  
typhoonzero 已提交
531

T
typhoonzero 已提交
532
    dim3 threads(platform::PADDLE_CUDA_NUM_THREADS, 1);
C
chengduo 已提交
533
    dim3 grid(in1_rows.size(), 1);
T
typhoonzero 已提交
534
    UpdateToTensorKernel<T, platform::PADDLE_CUDA_NUM_THREADS><<<
D
dzhwinter 已提交
535 536
        grid, threads, 0, context.stream()>>>(in1_data, in1_rows.cuda_data(),
                                              op, in2_data, in1_row_numel);
T
wip  
typhoonzero 已提交
537 538
  }
};
T
typhoonzero 已提交
539
}  // namespace scatter
540 541 542
}  // namespace math
}  // namespace operators
}  // namespace paddle