pool_cudnn_op.cu.cc 13.7 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
C
chengduoZH 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include <string>
Y
Yi Wang 已提交
16
#include "paddle/fluid/framework/op_registry.h"
17
#include "paddle/fluid/operators/math/math_function.h"
Y
Yi Wang 已提交
18 19
#include "paddle/fluid/operators/pool_op.h"
#include "paddle/fluid/platform/cudnn_helper.h"
C
chengduoZH 已提交
20 21 22 23 24 25 26 27 28

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using ScopedTensorDescriptor = platform::ScopedTensorDescriptor;
using ScopedPoolingDescriptor = platform::ScopedPoolingDescriptor;
using DataLayout = platform::DataLayout;
using PoolingMode = platform::PoolingMode;
K
update  
Kexin Zhao 已提交
29 30
template <typename T>
using ScalingParamType = typename platform::CudnnDataType<T>::ScalingParamType;
C
chengduoZH 已提交
31

32 33 34 35 36 37 38 39 40 41 42 43
DataLayout getLayoutFromStr(std::string data_format) {
  if (data_format == "NHWC") {
    return DataLayout::kNHWC;
  } else if (data_format == "NCHW") {
    return DataLayout::kNCHW;
  } else if (data_format == "NCDHW") {
    return DataLayout::kNCDHW;
  } else {
    return DataLayout::kNCDHW;
  }
}

C
chengduoZH 已提交
44
template <typename T>
45
class PoolCUDNNOpKernel : public framework::OpKernel<T> {
C
chengduoZH 已提交
46 47
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
48 49
    PADDLE_ENFORCE_EQ(platform::is_gpu_place(ctx.GetPlace()), true,
                      "It must use CUDAPlace.");
C
chengduoZH 已提交
50 51 52

    const Tensor *input = ctx.Input<Tensor>("X");
    Tensor *output = ctx.Output<Tensor>("Out");
53
    output->mutable_data<T>(ctx.GetPlace());
C
chengduoZH 已提交
54
    std::string pooling_type = ctx.Attr<std::string>("pooling_type");
55
    bool exclusive = ctx.Attr<bool>("exclusive");
56
    bool adaptive = ctx.Attr<bool>("adaptive");
C
chengduoZH 已提交
57 58 59
    std::vector<int> ksize = ctx.Attr<std::vector<int>>("ksize");
    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
    std::string data_format = ctx.Attr<std::string>("data_format");
    bool global_pooling = ctx.Attr<bool>("global_pooling");
    std::string padding_algorithm = ctx.Attr<std::string>("padding_algorithm");
    const bool channel_last = (data_format == "NHWC" || data_format == "NDHWC");

    // update paddings
    auto in_x_dims = input->dims();
    framework::DDim data_dims;
    if (channel_last) {
      data_dims = framework::slice_ddim(in_x_dims, 1, in_x_dims.size() - 1);
    } else {
      data_dims = framework::slice_ddim(in_x_dims, 2, in_x_dims.size());
    }
    UpdatePadding(&paddings, global_pooling, adaptive, padding_algorithm,
                  data_dims, strides, ksize);
    if (data_dims.size() * 2 == paddings.size()) {
      for (size_t i = 0; i < data_dims.size(); ++i) {
        paddings.erase(paddings.begin() + i + 1);
C
chengduoZH 已提交
78 79 80
      }
    }

81 82 83 84 85 86 87 88 89 90 91
    if (global_pooling) {
      UpdateKsize(&ksize, data_dims);
    }

    const std::string str_NCHW = "NCHW", str_NHWC = "NHWC";
    const std::string str_NCDHW = "NCDHW", str_NDHWC = "NDHWC";

    // -----------------transformed tensor ------------------------

    Tensor transformed_input(input->type());
    Tensor transformed_output(output->type());
C
chengduoZH 已提交
92 93
    DataLayout layout;

94
    if (data_format == str_NDHWC) {
C
chengduoZH 已提交
95
      layout = DataLayout::kNCDHW;
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
      auto &dev_ctx =
          ctx.template device_context<paddle::platform::CUDADeviceContext>();
      std::vector<int> axis{0, 4, 1, 2, 3};

      // input
      transformed_input.Resize(input->dims());

      auto in_dims_vec = framework::vectorize(input->dims());
      in_dims_vec[1] = input->dims()[4];
      in_dims_vec[2] = input->dims()[1];
      in_dims_vec[3] = input->dims()[2];
      in_dims_vec[4] = input->dims()[3];
      transformed_input.Resize(framework::make_ddim(in_dims_vec));
      transformed_input.mutable_data(ctx.GetPlace(), input->type());

      math::Transpose<paddle::platform::CUDADeviceContext, T, 5> trans5;
      trans5(dev_ctx, *input, &transformed_input, axis);

      // output
      transformed_output.Resize(output->dims());

      auto out_dims_vec = framework::vectorize(output->dims());
      out_dims_vec[1] = output->dims()[4];
      out_dims_vec[2] = output->dims()[1];
      out_dims_vec[3] = output->dims()[2];
      out_dims_vec[4] = output->dims()[3];
      transformed_output.Resize(framework::make_ddim(out_dims_vec));

    } else {
      layout = getLayoutFromStr(data_format);
      transformed_input = *input;
      transformed_output = *output;
C
chengduoZH 已提交
128
    }
C
chengduoZH 已提交
129

130 131 132 133 134 135 136 137 138
    const T *tranformed_input_data = transformed_input.data<T>();
    T *tranformed_output_data = transformed_output.mutable_data<T>(
        transformed_output.dims(), ctx.GetPlace());

    // ------------------- cudnn descriptors ---------------------
    ScopedTensorDescriptor input_desc;
    ScopedTensorDescriptor output_desc;
    ScopedPoolingDescriptor pool_desc;

C
chengduoZH 已提交
139
    cudnnTensorDescriptor_t cudnn_input_desc = input_desc.descriptor<T>(
140
        layout, framework::vectorize<int>(transformed_input.dims()));
C
chengduoZH 已提交
141
    cudnnTensorDescriptor_t cudnn_output_desc = output_desc.descriptor<T>(
142
        layout, framework::vectorize<int>(transformed_output.dims()));
C
chengduoZH 已提交
143 144 145 146 147

    PoolingMode pooling_mode;
    if (pooling_type == "max") {
      pooling_mode = PoolingMode::kMaximum;
    } else {
148 149
      pooling_mode = exclusive ? PoolingMode::kAverageExclusive
                               : PoolingMode::kAverageInclusive;
C
chengduoZH 已提交
150 151 152 153 154 155 156
    }

    cudnnPoolingDescriptor_t cudnn_pool_desc =
        pool_desc.descriptor(pooling_mode, ksize, paddings, strides);

    // ------------------- cudnn pool algorithm ---------------------
    auto handle = ctx.cuda_device_context().cudnn_handle();
K
update  
Kexin Zhao 已提交
157
    ScalingParamType<T> alpha = 1.0f, beta = 0.0f;
158

W
Wu Yi 已提交
159
    CUDNN_ENFORCE(platform::dynload::cudnnPoolingForward(
160 161 162 163 164 165 166 167 168 169 170
        handle, cudnn_pool_desc, &alpha, cudnn_input_desc,
        tranformed_input_data, &beta, cudnn_output_desc,
        tranformed_output_data));
    // add
    if (data_format == str_NDHWC) {
      auto &dev_ctx =
          ctx.template device_context<paddle::platform::CUDADeviceContext>();
      std::vector<int> axis{0, 2, 3, 4, 1};
      math::Transpose<paddle::platform::CUDADeviceContext, T, 5> trans5_v2;
      trans5_v2(dev_ctx, transformed_output, output, axis);
    }
C
chengduoZH 已提交
171 172 173 174
  }
};

template <typename T>
175
class PoolCUDNNGradOpKernel : public framework::OpKernel<T> {
C
chengduoZH 已提交
176 177
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
178 179
    PADDLE_ENFORCE_EQ(platform::is_gpu_place(ctx.GetPlace()), true,
                      "It must use CUDAPlace.");
C
chengduoZH 已提交
180 181 182 183 184 185 186

    const Tensor *input = ctx.Input<Tensor>("X");
    const Tensor *output = ctx.Input<Tensor>("Out");
    const Tensor *output_grad =
        ctx.Input<Tensor>(framework::GradVarName("Out"));
    Tensor *input_grad = ctx.Output<Tensor>(framework::GradVarName("X"));

C
chengduoZH 已提交
187
    std::string pooling_type = ctx.Attr<std::string>("pooling_type");
188
    bool exclusive = ctx.Attr<bool>("exclusive");
189
    bool adaptive = ctx.Attr<bool>("adaptive");
C
chengduoZH 已提交
190 191 192
    std::vector<int> ksize = ctx.Attr<std::vector<int>>("ksize");
    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
    std::string data_format = ctx.Attr<std::string>("data_format");
    bool global_pooling = ctx.Attr<bool>("global_pooling");
    std::string padding_algorithm = ctx.Attr<std::string>("padding_algorithm");
    const bool channel_last = (data_format == "NHWC" || data_format == "NDHWC");

    // update paddings
    auto in_x_dims = input->dims();
    framework::DDim data_dims;
    if (channel_last) {
      data_dims = framework::slice_ddim(in_x_dims, 1, in_x_dims.size() - 1);
    } else {
      data_dims = framework::slice_ddim(in_x_dims, 2, in_x_dims.size());
    }
    UpdatePadding(&paddings, global_pooling, adaptive, padding_algorithm,
                  data_dims, strides, ksize);
    if (data_dims.size() * 2 == paddings.size()) {
      for (size_t i = 0; i < data_dims.size(); ++i) {
        paddings.erase(paddings.begin() + i + 1);
C
fix bug  
chengduoZH 已提交
211
      }
C
chengduoZH 已提交
212 213
    }

214 215 216
    if (global_pooling) {
      UpdateKsize(&ksize, data_dims);
    }
C
chengduoZH 已提交
217

218 219 220 221 222 223 224
    // ------- tensor grad --------------
    Tensor transformed_input(input->type());
    Tensor transformed_output(output->type());
    Tensor transformed_output_grad(output_grad->type());

    input_grad->mutable_data<T>(ctx.GetPlace());
    Tensor transformed_input_grad(input_grad->type());
C
chengduoZH 已提交
225
    DataLayout layout;
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
    const std::string str_NCHW = "NCHW", str_NHWC = "NHWC";
    const std::string str_NCDHW = "NCDHW", str_NDHWC = "NDHWC";
    if (data_format == str_NDHWC) {
      layout = DataLayout::kNCDHW;
      auto &dev_ctx =
          ctx.template device_context<paddle::platform::CUDADeviceContext>();
      std::vector<int> axis{0, 4, 1, 2, 3};

      // input
      transformed_input.Resize(input->dims());
      auto in_dims_vec = framework::vectorize(input->dims());
      in_dims_vec[1] = input->dims()[4];
      in_dims_vec[2] = input->dims()[1];
      in_dims_vec[3] = input->dims()[2];
      in_dims_vec[4] = input->dims()[3];
      transformed_input.Resize(framework::make_ddim(in_dims_vec));
      transformed_input.mutable_data(ctx.GetPlace(), input->type());

      math::Transpose<paddle::platform::CUDADeviceContext, T, 5> trans5;
      trans5(dev_ctx, *input, &transformed_input, axis);

      // output
      transformed_output.Resize(output->dims());
      auto out_dims_vec = framework::vectorize(output->dims());
      out_dims_vec[1] = output->dims()[4];
      out_dims_vec[2] = output->dims()[1];
      out_dims_vec[3] = output->dims()[2];
      out_dims_vec[4] = output->dims()[3];
      transformed_output.Resize(framework::make_ddim(out_dims_vec));

      transformed_output.mutable_data(ctx.GetPlace(), output->type());

      math::Transpose<paddle::platform::CUDADeviceContext, T, 5> trans5_v2;
      trans5_v2(dev_ctx, *output, &transformed_output, axis);

      // output grad
      transformed_output_grad.Resize(framework::make_ddim(out_dims_vec));
      transformed_output_grad.mutable_data(ctx.GetPlace(), output_grad->type());

      math::Transpose<paddle::platform::CUDADeviceContext, T, 5> trans5_v3;
      trans5_v3(dev_ctx, *output_grad, &transformed_output_grad, axis);

      // input grad
      transformed_input_grad.Resize(framework::make_ddim(in_dims_vec));
C
chengduoZH 已提交
270 271

    } else {
272 273 274 275 276
      layout = getLayoutFromStr(data_format);
      transformed_input = *input;
      transformed_output = *output;
      transformed_output_grad = *output_grad;
      transformed_input_grad = *input_grad;
C
chengduoZH 已提交
277
    }
C
chengduoZH 已提交
278

279 280 281 282 283 284 285 286 287
    const T *input_data = transformed_input.data<T>();
    const T *output_data = transformed_output.data<T>();
    const T *output_grad_data = transformed_output_grad.data<T>();

    // ------------------- cudnn descriptors ---------------------
    ScopedTensorDescriptor input_desc;
    ScopedTensorDescriptor output_desc;
    ScopedPoolingDescriptor pool_desc;

C
chengduoZH 已提交
288
    cudnnTensorDescriptor_t cudnn_input_desc = input_desc.descriptor<T>(
289
        layout, framework::vectorize<int>(transformed_input.dims()));
C
chengduoZH 已提交
290
    cudnnTensorDescriptor_t cudnn_output_desc = output_desc.descriptor<T>(
291
        layout, framework::vectorize<int>(transformed_output.dims()));
C
chengduoZH 已提交
292 293 294

    PoolingMode pooling_mode;
    if (pooling_type == "max") {
D
dzhwinter 已提交
295 296 297 298 299
      if (FLAGS_cudnn_deterministic) {
        pooling_mode = PoolingMode::kMaximumDeterministic;
      } else {
        pooling_mode = PoolingMode::kMaximum;
      }
C
chengduoZH 已提交
300
    } else {
301 302
      pooling_mode = exclusive ? PoolingMode::kAverageExclusive
                               : PoolingMode::kAverageInclusive;
C
chengduoZH 已提交
303 304 305 306 307 308 309
    }

    cudnnPoolingDescriptor_t cudnn_pool_desc =
        pool_desc.descriptor(pooling_mode, ksize, paddings, strides);

    // ------------------- cudnn pool algorithm ---------------------
    auto handle = ctx.cuda_device_context().cudnn_handle();
K
update  
Kexin Zhao 已提交
310
    ScalingParamType<T> alpha = 1.0f, beta = 0.0f;
C
chengduoZH 已提交
311
    if (input_grad) {
312 313
      T *input_grad_data = transformed_input_grad.mutable_data<T>(
          transformed_input_grad.dims(), ctx.GetPlace());
C
chengduoZH 已提交
314
      // Because beta is zero, it is unnecessary to reset input_grad.
W
Wu Yi 已提交
315
      CUDNN_ENFORCE(platform::dynload::cudnnPoolingBackward(
C
chengduoZH 已提交
316
          handle, cudnn_pool_desc, &alpha, cudnn_output_desc, output_data,
317 318
          cudnn_output_desc, output_grad_data, cudnn_input_desc, input_data,
          &beta, cudnn_input_desc, input_grad_data));
319 320 321 322 323 324 325 326

      if (data_format == str_NDHWC) {
        auto &dev_ctx =
            ctx.template device_context<paddle::platform::CUDADeviceContext>();
        std::vector<int> axis{0, 2, 3, 4, 1};
        math::Transpose<paddle::platform::CUDADeviceContext, T, 5> trans5_v4;
        trans5_v4(dev_ctx, transformed_input_grad, input_grad, axis);
      }
C
chengduoZH 已提交
327 328 329 330 331 332 333 334
    }
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
K
Kexin Zhao 已提交
335
namespace plat = paddle::platform;
C
chengduoZH 已提交
336

K
Kexin Zhao 已提交
337
REGISTER_OP_KERNEL(pool2d, CUDNN, plat::CUDAPlace,
338
                   ops::PoolCUDNNOpKernel<float>,
K
Kexin Zhao 已提交
339 340 341
                   ops::PoolCUDNNOpKernel<double>,
                   ops::PoolCUDNNOpKernel<plat::float16>);
REGISTER_OP_KERNEL(pool2d_grad, CUDNN, plat::CUDAPlace,
342
                   ops::PoolCUDNNGradOpKernel<float>,
C
chengduo 已提交
343 344
                   ops::PoolCUDNNGradOpKernel<double>,
                   ops::PoolCUDNNGradOpKernel<plat::float16>);
345

K
Kexin Zhao 已提交
346
REGISTER_OP_KERNEL(pool3d, CUDNN, plat::CUDAPlace,
347
                   ops::PoolCUDNNOpKernel<float>,
K
Kexin Zhao 已提交
348 349
                   ops::PoolCUDNNOpKernel<double>,
                   ops::PoolCUDNNOpKernel<plat::float16>);
K
Kexin Zhao 已提交
350
REGISTER_OP_KERNEL(pool3d_grad, CUDNN, plat::CUDAPlace,
351
                   ops::PoolCUDNNGradOpKernel<float>,
352
                   ops::PoolCUDNNGradOpKernel<double>);