cuda_managed_memory_test.cu 4.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#ifdef PADDLE_WITH_CUDA
#include <cuda_runtime.h>
#endif
#ifdef PADDLE_WITH_HIP
#include <hip/hip_runtime.h>
#endif

#include "gtest/gtest.h"
#include "paddle/fluid/memory/malloc.h"
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
#include "paddle/fluid/platform/place.h"

namespace paddle {
namespace memory {

__global__ void write_kernel(int* data, uint64_t n, uint64_t step) {
  int thread_num = gridDim.x * blockDim.x;
  int thread_id = blockIdx.x * blockDim.x + threadIdx.x;
  for (uint64_t i = thread_id; i * step < n; i += thread_num) {
    *(data + i * step) = 1;
  }
}

__global__ void sum_kernel(int* data, uint64_t n, uint64_t step, int* sum) {
  int thread_num = gridDim.x * blockDim.x;
  int thread_id = blockIdx.x * blockDim.x + threadIdx.x;
  for (uint64_t i = thread_id; i * step < n; i += thread_num) {
    atomicAdd(sum, *(data + i * step));
  }
}

TEST(ManagedMemoryTest, H2DTest) {
  if (!platform::IsGPUManagedMemorySupported(0)) {
    return;
  }

  uint64_t n_data = 1024;
  uint64_t step = 1;
  allocation::AllocationPtr allocation =
      Alloc(platform::CUDAPlace(0), n_data * sizeof(int));
  int* data = static_cast<int*>(allocation->ptr());

  memset(data, 0, n_data * sizeof(int));          // located on host memory
  write_kernel<<<1, 1024>>>(data, n_data, step);  // trans to device memory

#ifdef PADDLE_WITH_CUDA
  PADDLE_ENFORCE_GPU_SUCCESS(cudaDeviceSynchronize());
#else
  PADDLE_ENFORCE_GPU_SUCCESS(hipDeviceSynchronize());
#endif

  int sum = 0;
  for (uint64_t i = 0; i < n_data; ++i) {
    sum += *(data + i);
  }
  EXPECT_EQ(sum, n_data / step);
  allocation = nullptr;
}

TEST(ManagedMemoryTest, D2HTest) {
  if (!platform::IsGPUManagedMemorySupported(0)) {
    return;
  }

  uint64_t n_data = 1024;
  uint64_t step = 1;
  AllocationPtr allocation =
      Alloc(platform::CUDAPlace(0), n_data * sizeof(int));
  int* data = static_cast<int*>(allocation->ptr());

  write_kernel<<<1, 1024>>>(data, n_data, step);  // located on device memory

#ifdef PADDLE_WITH_CUDA
  PADDLE_ENFORCE_GPU_SUCCESS(cudaDeviceSynchronize());
#else
  PADDLE_ENFORCE_GPU_SUCCESS(hipDeviceSynchronize());
#endif

  memset(data, 0, n_data * sizeof(int));  // trans to host memory

  int sum = 0;
  for (uint64_t i = 0; i < n_data; ++i) {
    sum += *(data + i);
  }
  EXPECT_EQ(sum, 0);
}

TEST(ManagedMemoryTest, OversubscribeGPUMemoryTest) {
  if (!platform::IsGPUManagedMemoryOversubscriptionSupported(0)) {
    return;
  }

  uint64_t available_mem = platform::GpuAvailableMemToAlloc();
  uint64_t n_data = available_mem * 2 / sizeof(int) +
                    1;  // requires more than 2 * available_mem bytes
  uint64_t step = 1024;
  AllocationPtr data_allocation =
      Alloc(platform::CUDAPlace(0), n_data * sizeof(int));
  AllocationPtr sum_allocation = Alloc(platform::CUDAPlace(0), sizeof(int));
  int* data = static_cast<int*>(data_allocation->ptr());
  int* sum = static_cast<int*>(sum_allocation->ptr());
  (*sum) = 0;

  write_kernel<<<5120, 1024>>>(data, n_data, step);
  sum_kernel<<<5120, 1024>>>(data, n_data, step, sum);

#ifdef PADDLE_WITH_CUDA
  PADDLE_ENFORCE_GPU_SUCCESS(cudaDeviceSynchronize());
#else
  PADDLE_ENFORCE_GPU_SUCCESS(hipDeviceSynchronize());
#endif

  EXPECT_EQ(*sum, (n_data + step - 1) / step);
}

TEST(ManagedMemoryTest, OOMExceptionTest) {
131 132 133
  if (!platform::IsGPUManagedMemorySupported(0)) {
    return;
  }
134 135 136 137 138 139
  EXPECT_THROW(Alloc(platform::CUDAPlace(0), size_t(1) << 60),
               memory::allocation::BadAlloc);
}

}  // namespace memory
}  // namespace paddle