test_fleet_amp_init.py 4.5 KB
Newer Older
H
huangxu96 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle
import paddle.distributed.fleet.base.role_maker as role_maker
import paddle.distributed.fleet as fleet
import paddle.fluid as fluid
import unittest
import paddle.nn.functional as F
import numpy as np

paddle.enable_static()


def gen_data():
    return {
        "x": np.random.random(size=(128, 32)).astype('float32'),
        "y": np.random.randint(
            2, size=(128, 1)).astype('int64')
    }


def mlp(input_x, input_y, hid_dim=128, label_dim=2):
    fc_1 = paddle.static.nn.fc(x=input_x, size=hid_dim, activation='tanh')
    fc_2 = paddle.static.nn.fc(x=fc_1, size=hid_dim, activation='tanh')
    prediction = paddle.static.nn.fc(x=[fc_2],
                                     size=label_dim,
                                     activation='softmax')
    cost = F.cross_entropy(input=prediction, label=input_y)
    avg_cost = paddle.mean(x=cost)
    return avg_cost


class TestFleetAMPInit(unittest.TestCase):
    def test_fleet_amp_init(self):
        if not fluid.core.is_compiled_with_cuda():
            return

50 51
        main_program = paddle.static.Program()
        startup_program = paddle.static.Program()
H
huangxu96 已提交
52 53 54 55

        role = role_maker.PaddleCloudRoleMaker(is_collective=True)
        fleet.init(role)

56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
        with paddle.static.program_guard(main_program, startup_program):
            input_x = paddle.static.data(
                name="x", shape=[None, 32], dtype='float32')
            input_y = paddle.static.data(
                name="y", shape=[None, 1], dtype='int64')

            cost = mlp(input_x, input_y)
            optimizer = paddle.optimizer.Momentum(
                learning_rate=0.001,
                momentum=0.9,
                weight_decay=fluid.regularizer.L2Decay(1e-4),
                multi_precision=True)

            optimizer = paddle.static.amp.decorate(optimizer)
            optimizer = fleet.distributed_optimizer(optimizer)
            optimizer.minimize(cost)

73 74
        loss_scale = optimizer.get_loss_scaling()

H
huangxu96 已提交
75 76 77
        place = paddle.CUDAPlace(0)

        exe = paddle.static.Executor(place)
78
        exe.run(startup_program)
79
        optimizer.amp_init(place)
H
huangxu96 已提交
80 81 82

        step = 1
        for i in range(step):
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
            cost_val = exe.run(program=main_program,
                               feed=gen_data(),
                               fetch_list=[cost.name])

    def test_fleet_amp_meta_optimizer_init(self):
        if not fluid.core.is_compiled_with_cuda():
            return

        main_program = paddle.static.Program()
        startup_program = paddle.static.Program()

        role = role_maker.PaddleCloudRoleMaker(is_collective=True)
        fleet.init(role)

        with paddle.static.program_guard(main_program, startup_program):
            input_x = paddle.static.data(
                name="x", shape=[None, 32], dtype='float32')
            input_y = paddle.static.data(
                name="y", shape=[None, 1], dtype='int64')

            cost = mlp(input_x, input_y)
            optimizer = paddle.optimizer.Momentum(
                learning_rate=0.001,
                momentum=0.9,
                weight_decay=fluid.regularizer.L2Decay(1e-4),
                multi_precision=True)

            strategy = paddle.distributed.fleet.DistributedStrategy()
            strategy.amp = True
            strategy.amp_configs = {'use_pure_fp16': True}
            strategy.gradient_merge = True
            strategy.gradient_merge_configs = {"k_steps": 2}

            optimizer = fleet.distributed_optimizer(optimizer, strategy)
            optimizer.minimize(cost)

        print(fleet._get_applied_meta_list())

        place = paddle.CUDAPlace(0)

        exe = paddle.static.Executor(place)
        exe.run(startup_program)
        optimizer.amp_init(place)

        step = 3
        for i in range(step):
            cost_val = exe.run(program=main_program,
H
huangxu96 已提交
130 131
                               feed=gen_data(),
                               fetch_list=[cost.name])
132
            print(cost_val)
H
huangxu96 已提交
133 134 135 136


if __name__ == '__main__':
    unittest.main()