auc_op.h 4.9 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
T
typhoonzero 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
16 17
#include <string>
#include <vector>
Y
Yi Wang 已提交
18 19
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
T
typhoonzero 已提交
20 21 22 23 24 25

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

T
auc_op  
typhoonzero 已提交
26 27 28 29
template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenVector = framework::EigenVector<T, MajorType, IndexType>;

Q
QI JUN 已提交
30
template <typename DeviceContext, typename T>
T
typhoonzero 已提交
31
class AucKernel : public framework::OpKernel<T> {
T
typhoonzero 已提交
32 33
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
武毅 已提交
34
    auto* inference = ctx.Input<Tensor>("Out");
T
typhoonzero 已提交
35 36
    auto* label = ctx.Input<Tensor>("Label");
    auto* auc = ctx.Output<Tensor>("AUC");
W
Wu Yi 已提交
37 38 39 40 41 42
    // Only use output var for now, make sure it's persistable and
    // not cleaned up for each batch.
    auto* true_positive = ctx.Output<Tensor>("TPOut");
    auto* false_positive = ctx.Output<Tensor>("FPOut");
    auto* true_negative = ctx.Output<Tensor>("TNOut");
    auto* false_negative = ctx.Output<Tensor>("FNOut");
T
typhoonzero 已提交
43 44 45 46 47 48 49 50

    float* auc_data = auc->mutable_data<float>(ctx.GetPlace());

    std::string curve = ctx.Attr<std::string>("curve");
    int num_thresholds = ctx.Attr<int>("num_thresholds");
    std::vector<float> thresholds_list;
    thresholds_list.reserve(num_thresholds);
    for (int i = 1; i < num_thresholds - 1; i++) {
51
      thresholds_list[i] = static_cast<float>(i) / (num_thresholds - 1);
T
typhoonzero 已提交
52 53 54 55 56
    }
    const float kEpsilon = 1e-7;
    thresholds_list[0] = 0.0f - kEpsilon;
    thresholds_list[num_thresholds - 1] = 1.0f + kEpsilon;

武毅 已提交
57 58
    size_t batch_size = inference->dims()[0];
    size_t inference_width = inference->dims()[1];
T
auc_op  
typhoonzero 已提交
59 60

    const T* inference_data = inference->data<T>();
武毅 已提交
61
    const int64_t* label_data = label->data<int64_t>();
T
typhoonzero 已提交
62

W
Wu Yi 已提交
63 64 65 66
    auto* tp_data = true_positive->mutable_data<int64_t>(ctx.GetPlace());
    auto* fn_data = false_negative->mutable_data<int64_t>(ctx.GetPlace());
    auto* tn_data = true_negative->mutable_data<int64_t>(ctx.GetPlace());
    auto* fp_data = false_positive->mutable_data<int64_t>(ctx.GetPlace());
T
typhoonzero 已提交
67

T
typhoonzero 已提交
68
    for (int idx_thresh = 0; idx_thresh < num_thresholds; idx_thresh++) {
T
typhoonzero 已提交
69
      // caculate TP, FN, TN, FP for current thresh
武毅 已提交
70 71 72 73 74 75 76
      int64_t tp = 0, fn = 0, tn = 0, fp = 0;
      for (size_t i = 0; i < batch_size; i++) {
        // NOTE: label_data used as bool, labels >0 will be treated as true.
        if (label_data[i]) {
          // use first(max) data in each row
          if (inference_data[i * inference_width] >=
              (thresholds_list[idx_thresh])) {
T
auc_op  
typhoonzero 已提交
77 78
            tp++;
          } else {
T
typhoonzero 已提交
79
            fn++;
T
auc_op  
typhoonzero 已提交
80 81
          }
        } else {
武毅 已提交
82 83
          if (inference_data[i * inference_width] >=
              (thresholds_list[idx_thresh])) {
T
auc_op  
typhoonzero 已提交
84
            fp++;
T
typhoonzero 已提交
85
          } else {
T
typhoonzero 已提交
86
            tn++;
T
typhoonzero 已提交
87 88 89 90
          }
        }
      }
      // store rates
W
Wu Yi 已提交
91 92 93 94
      tp_data[idx_thresh] += tp;
      fn_data[idx_thresh] += fn;
      tn_data[idx_thresh] += tn;
      fp_data[idx_thresh] += fp;
T
typhoonzero 已提交
95 96 97 98 99 100 101 102
    }
    // epsilon to avoid divide by zero.
    float epsilon = 1e-6;
    // Riemann sum to caculate auc.
    Tensor tp_rate, fp_rate, rec_rate;
    tp_rate.Resize({num_thresholds});
    fp_rate.Resize({num_thresholds});
    rec_rate.Resize({num_thresholds});
T
update  
typhoonzero 已提交
103 104 105
    float* tp_rate_data = tp_rate.mutable_data<float>(ctx.GetPlace());
    float* fp_rate_data = fp_rate.mutable_data<float>(ctx.GetPlace());
    float* rec_rate_data = rec_rate.mutable_data<float>(ctx.GetPlace());
T
typhoonzero 已提交
106
    for (int i = 0; i < num_thresholds; i++) {
107 108 109 110 111 112
      tp_rate_data[i] = (static_cast<float>(tp_data[i]) + epsilon) /
                        (tp_data[i] + fn_data[i] + epsilon);
      fp_rate_data[i] =
          static_cast<float>(fp_data[i]) / (fp_data[i] + tn_data[i] + epsilon);
      rec_rate_data[i] = (static_cast<float>(tp_data[i]) + epsilon) /
                         (tp_data[i] + fp_data[i] + epsilon);
T
typhoonzero 已提交
113
    }
T
typhoonzero 已提交
114
    *auc_data = 0.0f;
T
typhoonzero 已提交
115
    if (curve == "ROC") {
T
typhoonzero 已提交
116 117 118
      for (int i = 0; i < num_thresholds - 1; i++) {
        auto dx = fp_rate_data[i] - fp_rate_data[i + 1];
        auto y = (tp_rate_data[i] + tp_rate_data[i + 1]) / 2.0f;
T
typhoonzero 已提交
119 120
        *auc_data = *auc_data + dx * y;
      }
T
update  
typhoonzero 已提交
121
    } else if (curve == "PR") {
T
typhoonzero 已提交
122 123 124 125 126 127 128 129 130 131 132
      for (int i = 1; i < num_thresholds; i++) {
        auto dx = tp_rate_data[i] - tp_rate_data[i - 1];
        auto y = (rec_rate_data[i] + rec_rate_data[i - 1]) / 2.0f;
        *auc_data = *auc_data + dx * y;
      }
    }
  }
};

}  // namespace operators
}  // namespace paddle