py_layer_op.cc 9.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <vector>

#include "paddle/fluid/operators/py_layer_op.h"

namespace paddle {
namespace operators {

namespace py = ::pybind11;

void RunPyObject(py::object *py_object,
                 const std::vector<framework::Variable *> &ins,
                 std::vector<framework::Variable *> *outs) {
  py::gil_scoped_acquire guard;

  auto py_function = py_object->attr("backward");

  py::tuple inputs(ins.size());
  for (size_t i = 0; i < ins.size(); i++) {
    auto in_var = ins[i];
    if (in_var != nullptr) {
      auto name = paddle::string::Sprintf("generator_custom_py_layer_%d@GRAD",
                                          static_cast<int>(i));

      std::shared_ptr<imperative::VariableWrapper> temp_wrap =
          std::make_shared<imperative::VariableWrapper>(name, *in_var);
      temp_wrap->InnerSetOverridedStopGradient(true);
      std::shared_ptr<imperative::VarBase> temp_varbase =
          std::make_shared<imperative::VarBase>(temp_wrap);
      try {
        inputs[i] = py::cast(temp_varbase).ptr();
      } catch (py::cast_error &) {
        PADDLE_THROW(platform::errors::Unimplemented(
            "The output of `PyLayer.backward` should be `Tensor`."));
      }
    }
  }

  auto py_result = py_function(*py_object, *inputs);

  if (PyTuple_Check(py_result.ptr()) || PyList_Check(py_result.ptr())) {
    auto result_tuple = py_result.cast<py::tuple>();
    if (result_tuple.size() != outs->size()) {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "The number of outputs of `PyLayer.backward` should be %d, but "
          "received %d.",
          outs->size(), result_tuple.size()));
    }
    for (size_t i = 0; i < result_tuple.size(); i++) {
63 64
      if ((*outs)[i] != nullptr) {
        if (Py_None != result_tuple[i].ptr()) {
65 66 67 68 69 70 71 72 73 74 75 76
          if (py::isinstance<imperative::VarBase>(result_tuple[i])) {
            try {
              auto result_var =
                  result_tuple[i].cast<std::shared_ptr<imperative::VarBase>>();
              *(*outs)[i] = result_var->Var();
            } catch (py::cast_error &) {
              PADDLE_THROW(platform::errors::InvalidArgument(
                  "The `PyLayer.backward` function returns invalid argument, "
                  "the `%s` type argument can not be cast into `Tensor`.",
                  result_tuple[i].ptr()->ob_type->tp_name));
            }
          } else {
77
            PADDLE_THROW(platform::errors::InvalidArgument(
78 79 80
                "The output of `PyLayer.backward` should be `Tensor`, but "
                "received `%s`.",
                result_tuple[i].ptr()->ob_type->tp_name));
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
          }
        } else {
          PADDLE_THROW(platform::errors::InvalidArgument(
              "The %dth input tensor of forward needs gradient and the "
              "corresponding gradient cannot be None.",
              i));
        }
      } else {
        if (Py_None != result_tuple[i].ptr()) {
          PADDLE_THROW(platform::errors::InvalidArgument(
              "The %dth input tensor of forward do not need gradient and the "
              "corresponding gradient should be `None`.",
              i));
        }
      }
    }
  } else {
W
WeiXin 已提交
98 99 100 101 102 103
    if (1 != outs->size()) {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "The number of outputs of `PyLayer.backward` should be %d, but "
          "received 1.",
          outs->size()));
    }
104 105
    if ((*outs)[0] != nullptr) {
      if (Py_None != py_result.ptr()) {
106 107 108 109 110 111 112 113 114 115 116 117
        if (py::isinstance<imperative::VarBase>(py_result)) {
          try {
            auto result_var =
                py_result.cast<std::shared_ptr<imperative::VarBase>>();
            *((*outs)[0]) = result_var->Var();
          } catch (py::cast_error &) {
            PADDLE_THROW(platform::errors::InvalidArgument(
                "The `PyLayer.backward` function returns invalid argument, the "
                "`%s` type argument can not be cast into `Tensor`.",
                py_result.ptr()->ob_type->tp_name));
          }
        } else {
118
          PADDLE_THROW(platform::errors::InvalidArgument(
119 120 121
              "The output of `PyLayer.backward` should be `Tensor`, but "
              "received `%s`",
              py_result.ptr()->ob_type->tp_name));
122 123
        }
      } else {
124 125 126
        PADDLE_THROW(platform::errors::InvalidArgument(
            "The input tensor of forward needs gradient, so the output of "
            "`PyLayer.backward` can not be `None`."));
127 128
      }
    } else {
129 130 131
      PADDLE_THROW(platform::errors::InvalidArgument(
          "The input tensor of forward do not need gradient, so the output of "
          "`PyLayer.backward` should be `None`."));
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
    }
  }
}

void PyLayerGradOpMaker<paddle::imperative::OpBase>::Apply(
    GradOpPtr<paddle::imperative::OpBase> grad_op) const {
  grad_op->SetType("py_layer");
  auto &inner_op = grad_op->InnerOp();
  auto py_layer_op_const = dynamic_cast<const PyLayerOp *>(&inner_op);

  if (py_layer_op_const) {
    auto py_layer_op = const_cast<PyLayerOp *>(py_layer_op_const);
    py_layer_op->SetPyLayerContext(py_context_);

  } else {
    PADDLE_THROW(platform::errors::Fatal(
        "PyLayerGradOpMaker can't cast %s to PyLayerOp*.",
        typeid(&inner_op).name()));
  }

  auto fwd_out_grads = this->OutputGrad("Out");
  using return_type = decltype(fwd_out_grads);
  return_type bwd_ins;

  bwd_ins.insert(bwd_ins.begin(), fwd_out_grads.begin(), fwd_out_grads.end());

  auto bwd_outs = this->InputGrad("X", false);

  grad_op->SetInput("X", bwd_ins);
  grad_op->SetOutput("Out", bwd_outs);
}

class PyLayerOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "Inputs of PyLayer op.").AsDuplicable();
    AddOutput("Out", "Outputs of PyLayer op").AsDuplicable();
    AddComment(R"DOC("PyLayer Op")DOC");
  }
};

template <typename DeviceContext, typename T>
class PyLayerOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    auto &op_ = ctx.GetOp();
178 179 180 181 182 183
    auto const_pylayer_op = dynamic_cast<const PyLayerOp *>(&op_);
    if (const_pylayer_op) {
      auto pylayer_op = const_cast<PyLayerOp *>(const_pylayer_op);

      // Release contex after executing the compute
      auto py_layer_context = pylayer_op->ReleasePyLayerContext();
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
      py::object bk_ctx(py::handle(py_layer_context->GetMutableCtx()), true);
      auto &input_vars = ctx.MultiInputVar("X");
      auto output_vars = ctx.MultiOutputVar("Out");
      RunPyObject(&bk_ctx, input_vars, &output_vars);

    } else {
      PADDLE_THROW(platform::errors::Fatal(
          "PyLayerOpKernel can't cast %s to PyLayer*.", typeid(&op_).name()));
    }
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

REGISTER_OPERATOR(py_layer, ops::PyLayerOp, ops::PyLayerOpMaker,
                  ops::PyLayerGradOpMaker<paddle::imperative::OpBase>,
                  ops::PyLayerGradOpMaker<paddle::framework::OpDesc>);

REGISTER_OP_CPU_KERNEL(
    py_layer, ops::PyLayerOpKernel<paddle::platform::CPUDeviceContext, float>,
    ops::PyLayerOpKernel<paddle::platform::CPUDeviceContext,
                         ::paddle::platform::float16>,
    ops::PyLayerOpKernel<paddle::platform::CPUDeviceContext,
                         ::paddle::platform::bfloat16>,
    ops::PyLayerOpKernel<paddle::platform::CPUDeviceContext, double>,
    ops::PyLayerOpKernel<paddle::platform::CPUDeviceContext, int>,
    ops::PyLayerOpKernel<paddle::platform::CPUDeviceContext, int64_t>,

    ops::PyLayerOpKernel<paddle::platform::CPUDeviceContext, bool>,
    ops::PyLayerOpKernel<paddle::platform::CPUDeviceContext, uint8_t>,
    ops::PyLayerOpKernel<paddle::platform::CPUDeviceContext, int16_t>,
    ops::PyLayerOpKernel<paddle::platform::CPUDeviceContext, int8_t>,
    ops::PyLayerOpKernel<paddle::platform::CPUDeviceContext,
220
                         ::paddle::platform::complex<float>>,
221
    ops::PyLayerOpKernel<paddle::platform::CPUDeviceContext,
222
                         ::paddle::platform::complex<double>>);
223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
#ifdef PADDLE_WITH_CUDA
REGISTER_OP_CUDA_KERNEL(
    py_layer, ops::PyLayerOpKernel<paddle::platform::CUDADeviceContext, float>,
    ops::PyLayerOpKernel<paddle::platform::CUDADeviceContext,
                         ::paddle::platform::float16>,
    ops::PyLayerOpKernel<paddle::platform::CUDADeviceContext,
                         ::paddle::platform::bfloat16>,
    ops::PyLayerOpKernel<paddle::platform::CUDADeviceContext, double>,
    ops::PyLayerOpKernel<paddle::platform::CUDADeviceContext, int>,
    ops::PyLayerOpKernel<paddle::platform::CUDADeviceContext, int64_t>,

    ops::PyLayerOpKernel<paddle::platform::CUDADeviceContext, bool>,
    ops::PyLayerOpKernel<paddle::platform::CUDADeviceContext, uint8_t>,
    ops::PyLayerOpKernel<paddle::platform::CUDADeviceContext, int16_t>,
    ops::PyLayerOpKernel<paddle::platform::CUDADeviceContext, int8_t>,
    ops::PyLayerOpKernel<paddle::platform::CUDADeviceContext,
239
                         ::paddle::platform::complex<float>>,
240
    ops::PyLayerOpKernel<paddle::platform::CUDADeviceContext,
241
                         ::paddle::platform::complex<double>>);
242
#endif  // PADDLE_WITH_CUDA