test_sparse_attention_op.py 6.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
#   Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
import numpy as np
from op_test import OpTest
import paddle.fluid.core as core
import paddle
import os
import re
import platform


def get_cuda_version():
    result = os.popen("nvcc --version").read()
    regex = r'release (\S+),'
    match = re.search(regex, result)
    if match:
        num = str(match.group(1))
        integer, decimal = num.split('.')
        return int(integer) * 1000 + int(float(decimal) * 10)
    else:
        return -1


def get_linux_platform():
    if platform.system().lower() == 'windows':
        return 0
    elif platform.system().lower() == 'linux':
        return 1
    else:
        return -1


def get_suitable_env():
    if get_cuda_version() >= 11020 and get_linux_platform() == 1:
        return True
    else:
        return False


def softmax(x):
    max = np.max(x, axis=1, keepdims=True)
    e_x = np.exp(x - max)
    sum = np.sum(e_x, axis=1, keepdims=True)
    f_x = e_x / sum
    return f_x


def get_csr_value(mat, layout, nnz):
    row, col = mat.shape[0], mat.shape[1]
    value = np.zeros(nnz)
    ptr = 0
    for i in range(row):
        for j in range(col):
            if layout[i][j] == 1:
                value[ptr] = mat[i][j]
                ptr += 1
    return value


def ref_sparse_attention(q, k, v, offset, columns):
    row, col, nnz = q.shape[0], q.shape[1], columns.shape[0]
    mat = np.zeros((row, row))
    for cur_row in range(row):
        start_ptr = int(offset[cur_row])
        end_ptr = int(offset[cur_row + 1])
        for ptr in range(start_ptr, end_ptr):
            cur_col = int(columns[ptr])
            mat[cur_row][cur_col] = 1
    a = np.dot(q, k.T) * mat
    a_value = get_csr_value(a, mat, nnz)
    scaling = float(col)**-0.5
    a = scaling * a
    for i in range(row):
        for j in range(row):
            if mat[i][j] == 0:
                a[i][j] = float('-inf')
    b = softmax(a)
    b_value = get_csr_value(b, mat, nnz)
    result = np.dot(b, v)
    return result, a_value, b_value


def ref_batch_sparse_attention(q, k, v, offset, columns):
    batch_size, num_heads, row, col = q.shape
    nnz = columns.shape[2]
    result = np.zeros((batch_size, num_heads, row, col))
    result_sdd = np.zeros((batch_size, num_heads, nnz))
    result_softmax = np.zeros((batch_size, num_heads, nnz))
    for i in range(batch_size):
        for j in range(num_heads):
            cur_q, cur_k, cur_v, = q[i][j], k[i][j], v[i][j]
            cur_offset, cur_columns = offset[i][j], columns[i][j]
            cur_result, cur_sdd, cur_softmax = ref_sparse_attention(
                cur_q, cur_k, cur_v, cur_offset, cur_columns)
            result[i][j] = cur_result
            result_sdd[i][j], result_softmax[i][j] = cur_sdd, cur_softmax
    return result, result_sdd, result_softmax


def init_csr_format(batch_size, num_heads, rows, blocksize):
    block_num, block_last = rows / blocksize, rows % blocksize
    nnz_num = block_num * blocksize * blocksize + block_last * block_last
    offset = np.zeros(rows + 1)
    columns = np.zeros(int(nnz_num))
    mat = np.zeros((rows, rows))
    for i in range(0, rows, blocksize):
        for x in range(blocksize):
            for y in range(blocksize):
                p_x, p_y = i + x, i + y
                if (p_x < rows) and (p_y < rows):
                    mat[p_x][p_y] = 1
    p_offset, p_column, count = 0, 0, 0
    for i in range(rows):
        for j in range(rows):
            if mat[i][j] != 0:
                count += 1
                columns[p_column] = j
                p_column += 1
        p_offset += 1
        offset[p_offset] = count
    offset = np.expand_dims(np.expand_dims(offset, 0), 0)
    offset = offset.repeat(num_heads, axis=1)
    offset = offset.repeat(batch_size, axis=0)
    columns = np.expand_dims(np.expand_dims(columns, 0), 0)
    columns = columns.repeat(num_heads, axis=1)
    columns = columns.repeat(batch_size, axis=0)
    return offset, columns


@unittest.skipIf(
    not core.is_compiled_with_cuda() or get_suitable_env() == False,
    "core is not compiled with CUDA and cuda version need >= 11.2 in windows")
class TestSparseAttentionOp(OpTest):
    def config(self):
        self.shape = (1, 1, 16, 8)
        self.blocksize = 2
        self.dtype = "float64"

    def setUp(self):
        paddle.enable_static()
        self.config()
        self.op_type = "sparse_attention"
        self.place = paddle.CUDAPlace(0)
        self.q = np.random.random(self.shape).astype(self.dtype)
        self.k = np.random.random(self.shape).astype(self.dtype)
        self.v = np.random.random(self.shape).astype(self.dtype)
        offset, columns = init_csr_format(self.shape[0], self.shape[1],
                                          self.shape[2], self.blocksize)
        self.offset = offset.astype('int32')
        self.columns = columns.astype('int32')

        result, result_sdd, result_softmax = ref_batch_sparse_attention(
            self.q, self.k, self.v, self.offset, self.columns)

        self.inputs = {
            'Q': self.q,
            'K': self.k,
            'V': self.v,
            'Offset': self.offset,
            'Columns': self.columns
        }
        self.outputs = {
            'Out': result.astype(self.dtype),
            'SparseDotSdd': result_sdd.astype(self.dtype),
            'Softmax': result_softmax.astype(self.dtype)
        }

    def test_check_output(self):
        self.check_output_with_place(self.place)

    def test_check_grad(self):
        self.check_grad_with_place(self.place, ['Q'], 'Out')
        self.check_grad_with_place(self.place, ['K'], 'Out')
        self.check_grad_with_place(self.place, ['V'], 'Out')


class TestSparseAttentionOpFp32Test(TestSparseAttentionOp):
    def config(self):
        self.shape = (1, 1, 8, 16)
        self.blocksize = 2
        self.dtype = "float32"


class TestSparseAttentionOpShapeTest(TestSparseAttentionOp):
    def config(self):
        self.shape = (2, 2, 32, 8)
        self.blocksize = 8
        self.dtype = "float64"


if __name__ == '__main__':
    unittest.main()