op_tester.cc 16.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/benchmark/op_tester.h"
16
#include <fstream>
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
#include "gflags/gflags.h"
#include "gtest/gtest.h"
#include "paddle/fluid/framework/op_info.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/variable_helper.h"
#include "paddle/fluid/platform/init.h"
#include "paddle/fluid/platform/profiler.h"
#include "paddle/fluid/platform/timer.h"
#include "paddle/fluid/pybind/pybind.h"

namespace paddle {
namespace operators {
namespace benchmark {

DEFINE_string(op_config_list, "", "Path of op config file.");
32
DEFINE_int32(specified_config_id, -1, "Test the specified op config.");
33 34 35 36 37 38 39 40 41 42 43 44 45

void OpTester::Init(const std::string &filename) {
  Init(OpTesterConfig(filename));
}

void OpTester::Init(const OpTesterConfig &config) {
  config_ = config;

  auto &op_desc_info = framework::OpInfoMap::Instance();
  // Initialize the OpDesc
  if (op_desc_info.Has(config_.op_type)) {
    type_ = config_.op_type;

Y
Yiqun Liu 已提交
46
    CreateOpDesc();
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
    CreateInputVarDesc();
    CreateOutputVarDesc();
  } else {
    LOG(FATAL) << "Op \"" << config_.op_type << "\" is not registered.";
  }

  if (config_.device_id >= 0) {
    place_ = paddle::platform::CUDAPlace(config_.device_id);
  } else {
    place_ = paddle::platform::CPUPlace();
  }

  framework::InitDevices(false);
  scope_.reset(new paddle::framework::Scope());

  op_ = framework::OpRegistry::CreateOp(op_desc_);
  CreateVariables(scope_.get());
}

void OpTester::Run() {
  if (config_.print_debug_string) {
    LOG(INFO) << DebugString();
  }

  // Warm up
  RunImpl();

  platform::Timer timer;
  if (config_.profile) {
    if (platform::is_cpu_place(place_)) {
      platform::EnableProfiler(platform::ProfilerState::kCPU);
    } else {
#ifdef PADDLE_WITH_CUDA
      platform::EnableProfiler(platform::ProfilerState::kAll);
      platform::SetDeviceId(config_.device_id);
#else
      PADDLE_THROW("'CUDAPlace' is not supported in CPU only device.");
#endif
    }

    timer.Start();
    for (int i = config_.repeat; i > 0; --i) {
      RunImpl();
    }
    timer.Pause();
    platform::DisableProfiler(platform::EventSortingKey::kDefault,
                              "op_tester_profiler");
  } else {
    timer.Start();
    for (int i = config_.repeat; i > 0; --i) {
      RunImpl();
    }
    timer.Pause();
  }
  config_.runtime = timer.ElapsedMS() / config_.repeat;
  LOG(INFO) << "=== Run " << config_.repeat
            << " times, latency: " << config_.runtime << " ms ===";
}

void OpTester::RunImpl() {
  op_->Run(*scope_, place_);
  platform::DeviceContextPool::Instance().Get(place_)->Wait();
  scope_->DropKids();
}

std::vector<std::string> OpTester::GetOpProtoInputNames() {
  std::vector<std::string> input_names;
  const framework::proto::OpProto &proto =
      framework::OpInfoMap::Instance().Get(type_).Proto();
  for (int i = 0; i != proto.inputs_size(); ++i) {
    const auto &input = proto.inputs(i);
    input_names.push_back(input.name());
  }
  return input_names;
}

std::vector<std::string> OpTester::GetOpProtoOutputNames() {
  std::vector<std::string> output_names;
  const framework::proto::OpProto &proto =
      framework::OpInfoMap::Instance().Get(type_).Proto();
  for (int i = 0; i != proto.outputs_size(); ++i) {
    const auto &output = proto.outputs(i);
    output_names.push_back(output.name());
  }
  return output_names;
}

Y
Yiqun Liu 已提交
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
std::unordered_map<std::string, framework::proto::AttrType>
OpTester::GetOpProtoAttrNames() {
  std::unordered_map<std::string, framework::proto::AttrType> attr_types;
  const framework::proto::OpProto &proto =
      framework::OpInfoMap::Instance().Get(type_).Proto();
  const std::vector<std::string> skipped_attrs = {
      framework::OpProtoAndCheckerMaker::OpRoleAttrName(),
      framework::OpProtoAndCheckerMaker::OpRoleVarAttrName(),
      framework::OpProtoAndCheckerMaker::OpNamescopeAttrName(),
      framework::OpProtoAndCheckerMaker::OpCreationCallstackAttrName()};
  for (int i = 0; i != proto.attrs_size(); ++i) {
    const auto &attr = proto.attrs(i);
    if (!Has(skipped_attrs, attr.name())) {
      VLOG(4) << "attr: " << attr.name() << ", type: " << attr.type();
      attr_types[attr.name()] = attr.type();
    }
  }
  return attr_types;
}

framework::proto::VarType::Type OpTester::TransToVarType(std::string str) {
  if (str == "int32") {
    return framework::proto::VarType::INT32;
  } else if (str == "int64") {
    return framework::proto::VarType::INT64;
  } else if (str == "fp32") {
    return framework::proto::VarType::FP32;
  } else if (str == "fp64") {
    return framework::proto::VarType::FP64;
  } else {
    PADDLE_THROW("Unsupported dtype %s.", str.c_str());
  }
}

168 169 170 171 172 173 174 175 176 177 178 179 180 181
void OpTester::CreateInputVarDesc() {
  std::vector<std::string> input_names = GetOpProtoInputNames();
  for (auto &name : input_names) {
    const OpInputConfig *input = config_.GetInput(name);
    if (input == nullptr) {
      LOG(FATAL) << "The input " << name << " of op " << config_.op_type
                 << " is not correctlly provided.";
    }

    std::string var_name = config_.op_type + "." + name;
    framework::VarDesc *var = Var(var_name);
    // Need to support more type
    var->SetType(framework::proto::VarType::LOD_TENSOR);
    var->SetPersistable(false);
Y
Yiqun Liu 已提交
182
    var->SetDataType(TransToVarType(input->dtype));
183 184 185
    var->SetShape(input->dims);

    op_desc_.SetInput(name, {var_name});
Y
Yiqun Liu 已提交
186
    inputs_[var_name] = *input;
187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
  }
}

void OpTester::CreateOutputVarDesc() {
  std::vector<std::string> output_names = GetOpProtoOutputNames();
  for (auto &name : output_names) {
    std::string var_name = config_.op_type + "." + name;
    framework::VarDesc *var = Var(var_name);
    // Need to support more type
    var->SetType(framework::proto::VarType::LOD_TENSOR);
    var->SetPersistable(false);
    var->SetDataType(framework::proto::VarType::FP32);

    op_desc_.SetOutput(name, {var_name});
  }
}

Y
Yiqun Liu 已提交
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
void OpTester::CreateOpDesc() {
  op_desc_.SetType(config_.op_type);
  std::unordered_map<std::string, framework::proto::AttrType> attr_types =
      GetOpProtoAttrNames();
  for (auto item : config_.attrs) {
    const std::string &name = item.first;
    if (attr_types.find(name) == attr_types.end()) {
      LOG(FATAL) << "Operator " << type_ << " do not have attr " << name;
    }

    const std::string &value_str = item.second;
    const framework::proto::AttrType &type = attr_types[name];
    switch (type) {
      case framework::proto::AttrType::BOOLEAN:
        break;
      case framework::proto::AttrType::INT: {
        int value = StringTo<int>(value_str);
        op_desc_.SetAttr(name, {value});
      } break;
      case framework::proto::AttrType::FLOAT: {
        float value = StringTo<float>(value_str);
        op_desc_.SetAttr(name, {value});
      } break;
      case framework::proto::AttrType::STRING: {
        op_desc_.SetAttr(name, {value_str});
      } break;
      case framework::proto::AttrType::BOOLEANS:
      case framework::proto::AttrType::INTS:
      case framework::proto::AttrType::FLOATS:
      case framework::proto::AttrType::STRINGS:
        LOG(FATAL) << "Not supported yet.";
        break;
      case framework::proto::AttrType::LONG: {
        int64_t value = StringTo<int64_t>(value_str);
        op_desc_.SetAttr(name, value);
      } break;
      case framework::proto::AttrType::LONGS:
      default:
        PADDLE_THROW("Unsupport attr type %d", type);
    }
  }
}

247 248 249 250 251 252 253 254 255 256 257 258
framework::VarDesc *OpTester::Var(const std::string &name) {
  auto it = vars_.find(name);
  if (it != vars_.end()) {
    return it->second.get();
  }
  auto *var = new framework::VarDesc(name);
  vars_[name].reset(var);
  return var;
}

template <typename T>
void OpTester::SetupTensor(framework::LoDTensor *tensor,
Y
Yiqun Liu 已提交
259 260
                           const std::vector<int64_t> &shape, T lower, T upper,
                           const std::string &initializer) {
261 262 263 264 265
  static unsigned int seed = 100;
  std::mt19937 rng(seed++);
  std::uniform_real_distribution<double> uniform_dist(0, 1);

  T *ptr = tensor->mutable_data<T>(framework::make_ddim(shape), place_);
Y
Yiqun Liu 已提交
266 267 268 269 270 271 272

  framework::LoDTensor cpu_tensor;
  T *cpu_ptr = nullptr;

  if (!platform::is_cpu_place(place_)) {
    cpu_ptr = cpu_tensor.mutable_data<T>(framework::make_ddim(shape),
                                         platform::CPUPlace());
273
  } else {
Y
Yiqun Liu 已提交
274 275 276 277
    cpu_ptr = ptr;
  }

  if (initializer == "random") {
278 279 280
    for (int i = 0; i < cpu_tensor.numel(); ++i) {
      cpu_ptr[i] = static_cast<T>(uniform_dist(rng) * (upper - lower) + lower);
    }
Y
Yiqun Liu 已提交
281 282 283 284 285 286 287 288 289 290 291 292 293
  } else if (initializer == "natural") {
    for (int i = 0; i < cpu_tensor.numel(); ++i) {
      cpu_ptr[i] = lower + i;
    }
  } else if (initializer == "zeros") {
    for (int i = 0; i < cpu_tensor.numel(); ++i) {
      cpu_ptr[i] = 0;
    }
  } else {
    PADDLE_THROW("Unsupported initializer %s.", initializer.c_str());
  }

  if (!platform::is_cpu_place(place_)) {
294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
    TensorCopySync(cpu_tensor, place_, tensor);
  }
}

void OpTester::CreateVariables(framework::Scope *scope) {
  for (auto &item : vars_) {
    auto &var = item.second;
    if (var->Name() == framework::kEmptyVarName) {
      continue;
    }

    auto *ptr = scope->Var(var->Name());
    framework::InitializeVariable(ptr, var->GetType());
    if (var->Persistable()) {
      VLOG(3) << "Create Variable " << var->Name()
              << " global, which pointer is " << ptr;
    } else {
      VLOG(3) << "Create Variable " << var->Name()
              << " locally, which pointer is " << ptr;
    }
  }

Y
Yiqun Liu 已提交
316
  for (auto &item : inputs_) {
317 318 319 320 321
    // Allocate memory for input tensor
    auto &var_name = item.first;
    VLOG(3) << "Allocate memory for tensor " << var_name;

    auto &var_desc = vars_[var_name];
322 323
    std::vector<int64_t> shape = var_desc->GetShape();

324
    auto *var = scope->Var(var_name);
325
    auto *tensor = var->GetMutable<framework::LoDTensor>();
Y
Yiqun Liu 已提交
326 327 328 329 330 331 332 333 334 335 336 337 338 339
    const auto &data_type = var_desc->GetDataType();
    if (data_type == framework::proto::VarType::INT32) {
      SetupTensor<int>(tensor, shape, 0, 1, item.second.initializer);
    } else if (data_type == framework::proto::VarType::INT64) {
      SetupTensor<int64_t>(tensor, shape, 0, 1, item.second.initializer);
    } else if (data_type == framework::proto::VarType::FP32) {
      SetupTensor<float>(tensor, shape, static_cast<float>(0.0),
                         static_cast<float>(1.0), item.second.initializer);
    } else if (data_type == framework::proto::VarType::FP64) {
      SetupTensor<double>(tensor, shape, static_cast<double>(0.0),
                          static_cast<double>(1.0), item.second.initializer);
    } else {
      PADDLE_THROW("Unsupported dtype %d.", data_type);
    }
340 341

    VLOG(3) << "Set lod for tensor " << var_name;
Y
Yiqun Liu 已提交
342
    std::vector<std::vector<size_t>> &lod_vec = item.second.lod;
343 344 345 346 347
    framework::LoD lod;
    for (size_t i = 0; i < lod_vec.size(); ++i) {
      lod.push_back(lod_vec[i]);
    }
    tensor->set_lod(lod);
348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369
  }
}

static std::string GenSpaces(int count) {
  std::stringstream ss;
  for (int i = 0; i < count; ++i) {
    ss << "  ";
  }
  return ss.str();
}

std::string OpTester::DebugString() {
  std::stringstream ss;
  int count = 0;
  for (auto &item : vars_) {
    auto &var = item.second;
    ss << GenSpaces(count++) << "vars {\n";
    ss << GenSpaces(count) << "name: \"" << var->Name() << "\"\n";
    ss << GenSpaces(count++) << "type: {\n";
    ss << GenSpaces(count) << "type: LOD_TENSOR\n";
    ss << GenSpaces(count++) << "lod_tensor {\n";
    ss << GenSpaces(count++) << "tensor {\n";
Y
Yiqun Liu 已提交
370 371 372 373 374 375 376 377 378 379
    const auto &data_type = var->GetDataType();
    if (data_type == framework::proto::VarType::INT32) {
      ss << GenSpaces(count) << "data_type: INT32\n";
    } else if (data_type == framework::proto::VarType::INT64) {
      ss << GenSpaces(count) << "data_type: INT64\n";
    } else if (data_type == framework::proto::VarType::FP32) {
      ss << GenSpaces(count) << "data_type: FP32\n";
    } else if (data_type == framework::proto::VarType::FP64) {
      ss << GenSpaces(count) << "data_type: FP64\n";
    }
380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
    std::vector<int64_t> shape = var->GetShape();
    for (auto d : shape) {
      ss << GenSpaces(count) << "dims: " << d << "\n";
    }
    ss << GenSpaces(--count) << "}\n";
    ss << GenSpaces(--count) << "}\n";
    ss << GenSpaces(--count) << "}\n";
    ss << GenSpaces(count) << "persistable: " << var->Persistable() << "\n";
    ss << GenSpaces(--count) << "}\n";
  }
  ss << GenSpaces(count++) << "ops {\n";
  for (auto &name : op_desc_.InputNames()) {
    ss << GenSpaces(count++) << "inputs {\n";
    ss << GenSpaces(count) << "parameters: \"" << name << "\"\n";
    ss << GenSpaces(count) << "arguments: \"" << op_desc_.Input(name)[0]
       << "\"\n";
    ss << GenSpaces(--count) << "}\n";
  }
  for (auto &name : op_desc_.OutputNames()) {
    ss << GenSpaces(count++) << "outputs {\n";
    ss << GenSpaces(count) << "parameters: \"" << name << "\"\n";
    ss << GenSpaces(count) << "arguments: \"" << op_desc_.Output(name)[0]
       << "\"\n";
    ss << GenSpaces(--count) << "}\n";
  }
  ss << GenSpaces(count) << "type: " << op_desc_.Type() << "\n";
Y
Yiqun Liu 已提交
406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462
  for (auto &name : op_desc_.AttrNames()) {
    ss << GenSpaces(count++) << "attrs {\n";
    const auto &attr_type = op_desc_.GetAttrType(name);
    const auto &attr = op_desc_.GetAttr(name);
    ss << GenSpaces(count) << "name: \"" << name << "\"\n";
    switch (attr_type) {
      case framework::proto::AttrType::BOOLEAN: {
        ss << GenSpaces(count) << "type: BOOLEAN\n";
        ss << GenSpaces(count) << "b: " << boost::get<bool>(attr) << "\n";
      } break;
      case framework::proto::AttrType::INT: {
        ss << GenSpaces(count) << "type: INT\n";
        ss << GenSpaces(count) << "i: " << boost::get<int>(attr) << "\n";
      } break;
      case framework::proto::AttrType::FLOAT: {
        ss << GenSpaces(count) << "type: FLOAT\n";
        ss << GenSpaces(count) << "f: " << boost::get<float>(attr) << "\n";
      } break;
      case framework::proto::AttrType::STRING: {
        ss << GenSpaces(count) << "type: STRING\n";
        ss << GenSpaces(count) << "s: \"" << boost::get<std::string>(attr)
           << "\"\n";
      } break;
      case framework::proto::AttrType::BOOLEANS: {
        ss << GenSpaces(count) << "type: BOOLEANS\n";
        ss << GenSpaces(count) << "bools: "
           << "\n";
      } break;
      case framework::proto::AttrType::INTS: {
        ss << GenSpaces(count) << "type: INTS\n";
        ss << GenSpaces(count) << "ints: "
           << "\n";
      } break;
      case framework::proto::AttrType::FLOATS: {
        ss << GenSpaces(count) << "type: FLOATS\n";
        ss << GenSpaces(count) << "floats: "
           << "\n";
      } break;
      case framework::proto::AttrType::STRINGS: {
        ss << GenSpaces(count) << "type: STRINGS\n";
        ss << GenSpaces(count) << "strings: "
           << "\n";
      } break;
      case framework::proto::AttrType::LONG: {
        ss << GenSpaces(count) << "type: LONG\n";
        ss << GenSpaces(count) << "l: " << boost::get<int64_t>(attr) << "\n";
      } break;
      case framework::proto::AttrType::LONGS: {
        ss << GenSpaces(count) << "type: LONGS\n";
        ss << GenSpaces(count) << "longs: "
           << "\n";
      } break;
      default:
        PADDLE_THROW("Unsupport attr type %d", attr_type);
    }
    ss << GenSpaces(--count) << "}\n";
  }
463 464 465 466 467 468
  ss << GenSpaces(--count) << "}\n";
  return ss.str();
}

TEST(op_tester, base) {
  if (!FLAGS_op_config_list.empty()) {
469 470 471 472 473
    std::ifstream fin(FLAGS_op_config_list, std::ios::in | std::ios::binary);
    PADDLE_ENFORCE(static_cast<bool>(fin), "Cannot open file %s",
                   FLAGS_op_config_list.c_str());
    std::vector<OpTesterConfig> op_configs;
    while (!fin.eof()) {
Y
Yiqun Liu 已提交
474
      VLOG(4) << "Reading config " << op_configs.size() << "...";
475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492
      OpTesterConfig config;
      bool result = config.Init(fin);
      if (result) {
        op_configs.push_back(config);
      }
    }
    if (FLAGS_specified_config_id >= 0 &&
        FLAGS_specified_config_id < static_cast<int>(op_configs.size())) {
      OpTester tester;
      tester.Init(op_configs[FLAGS_specified_config_id]);
      tester.Run();
    } else {
      for (size_t i = 0; i < op_configs.size(); ++i) {
        OpTester tester;
        tester.Init(op_configs[i]);
        tester.Run();
      }
    }
493
  } else {
494
    OpTester tester;
495 496 497 498 499 500 501 502
    OpTesterConfig config;
    config.op_type = "elementwise_add";
    config.inputs.resize(2);
    config.inputs[0].name = "X";
    config.inputs[0].dims = {64, 64};
    config.inputs[1].name = "Y";
    config.inputs[1].dims = {64, 1};
    tester.Init(config);
503
    tester.Run();
504 505 506 507 508 509
  }
}

}  // namespace benchmark
}  // namespace operators
}  // namespace paddle