test_collective_api_base.py 10.3 KB
Newer Older
1
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function
import numpy as np
import unittest
import time
import argparse
import os
import six
import sys
import subprocess
import traceback
import functools
import pickle
from contextlib import closing
from six import string_types
import paddle.fluid as fluid
import paddle.fluid.unique_name as nameGen
from paddle.fluid import core


class TestCollectiveAPIRunnerBase(object):
    def get_model(self, train_prog, startup_prog, rank):
        raise NotImplementedError(
            "get model should be implemented by child class.")

    def wait_server_ready(self, endpoints):
        assert not isinstance(endpoints, string_types)
        while True:
            all_ok = True
            not_ready_endpoints = []
            for ep in endpoints:
                ip_port = ep.split(":")
                with closing(
                        socket.socket(socket.AF_INET,
                                      socket.SOCK_STREAM)) as sock:
                    sock.settimeout(2)
                    result = sock.connect_ex((ip_port[0], int(ip_port[1])))
                    if result != 0:
                        all_ok = False
                        not_ready_endpoints.append(ep)
            if not all_ok:
                sys.stderr.write("server not ready, wait 3 sec to retry...\n")
                sys.stderr.write("not ready endpoints:" + str(
                    not_ready_endpoints) + "\n")
                sys.stderr.flush()
                time.sleep(3)
            else:
                break

63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
    def initCommunicator(self, program, rank, nranks, wait_port,
                         current_endpoint, endpoints):
        other_endpoints = endpoints[:]
        other_endpoints.remove(current_endpoint)
        if rank == 0 and wait_port:
            self.wait_server_ready(other_endpoints)
        block = program.global_block()
        nccl_id_var = block.create_var(
            name=nameGen.generate('nccl_id'),
            persistable=True,
            type=core.VarDesc.VarType.RAW)

        block.append_op(
            type='c_gen_nccl_id',
            inputs={},
            outputs={'Out': nccl_id_var},
            attrs={
                'rank': rank,
                'endpoint': current_endpoint,
                'other_endpoints': other_endpoints
            })

        block.append_op(
            type='c_comm_init',
            inputs={'X': nccl_id_var},
            outputs={},
            attrs={
                'nranks': nranks,
                'rank': rank,
                'ring_id': self.global_ring_id
            })

95 96 97 98 99 100 101 102 103
    def run_trainer(self, args):
        train_prog = fluid.Program()
        startup_prog = fluid.Program()
        endpoints = args["endpoints"].split(",")
        rank = args["trainerid"]
        current_endpoint = args["currentendpoint"]
        nranks = 2
        result = self.get_model(train_prog, startup_prog, rank)
        if args['backend'] == 'nccl':
104 105
            self.initCommunicator(startup_prog, rank, nranks, True,
                                  current_endpoint, endpoints)
106 107 108 109
            device_id = int(os.getenv("FLAGS_selected_gpus", "0"))
            place = fluid.CUDAPlace(
                device_id)  #if args.use_gpu else fluid.CPUPlace()
        else:
110 111 112 113 114 115 116 117 118 119
            strategy = fluid.core.GlooParallelStrategy()
            strategy.rank = rank
            strategy.rank_num = nranks
            strategy.prefix = ""
            strategy.iface = "lo"
            strategy.init_seconds = 999999
            strategy.run_seconds = 999999
            strategy.path = "/tmp/tmp%d" % args['path_id']
            gloo = fluid.core.GlooParallelContext(strategy)
            gloo.init()
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
            place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        exe.run(startup_prog)
        np.random.seed(os.getpid())
        indata = np.random.random((10, 1000))
        fetch_list = []
        for elem in result:
            fetch_list.append(elem.name)
        out = exe.run(train_prog,
                      feed={'tindata': indata},
                      fetch_list=fetch_list)
        if six.PY2:
            print(pickle.dumps(out))
        else:
            sys.stdout.buffer.write(pickle.dumps(out))


def runtime_main(test_class, col_type):
    args = {}
    model = test_class()
    args["deviceid"] = os.getenv("FLAGS_selected_gpus")
    args["trainerid"] = int(os.getenv("PADDLE_TRAINER_ID"))
    args["trainernum"] = int(os.getenv("PADDLE_TRAINERS_NUM"))
    args["endpoints"] = os.getenv('PADDLE_TRAINER_ENDPOINTS')
    args["currentendpoint"] = os.getenv("PADDLE_CURRENT_ENDPOINT")
    args["col_type"] = col_type
    args["backend"] = os.getenv("BACKEND")
    args["path_id"] = int(os.getenv("PATH_ID"))
    model.run_trainer(args)


import paddle.compat as cpt
import socket
from contextlib import closing


class TestDistBase(unittest.TestCase):
    def setUp(self):
        self._port_set = set()
        self._trainers = 2
        self._ps_endpoints = "127.0.0.1:%s,127.0.0.1:%s" % (
            self._find_free_port(), self._find_free_port())
        self._python_interp = sys.executable

    def _find_free_port(self):
        def __free_port():
            with closing(socket.socket(socket.AF_INET,
                                       socket.SOCK_STREAM)) as s:
                s.bind(('', 0))
                return s.getsockname()[1]

        while True:
            port = __free_port()
            if port not in self._port_set:
                self._port_set.add(port)
                return port

    def _run_cluster(self, model_file, envs):
        worker_endpoints = self._ps_endpoints.split(",")
        w0_ep, w1_ep = worker_endpoints
        #print("w0_ep:",w0_ep," w1_ep:",w1_ep)
        env0 = {
            "FLAGS_selected_gpus": "0",
            "PADDLE_TRAINER_ID": "0",
            "PADDLE_TRAINERS_NUM": "2",
            "PADDLE_TRAINER_ENDPOINTS": self._ps_endpoints,
            "PADDLE_CURRENT_ENDPOINT": w0_ep
        }

        env1 = {
            "FLAGS_selected_gpus": "1",
            "PADDLE_TRAINER_ID": "1",
            "PADDLE_TRAINERS_NUM": "2",
            "PADDLE_TRAINER_ENDPOINTS": self._ps_endpoints,
            "PADDLE_CURRENT_ENDPOINT": w1_ep
        }
        #update environment
        env0.update(envs)
        env1.update(envs)
        tr_cmd = "%s %s"
        tr0_cmd = tr_cmd % (self._python_interp, model_file)
        tr1_cmd = tr_cmd % (self._python_interp, model_file)
202 203
        tr0_pipe = open("/tmp/tr0_err.log", "wb")
        tr1_pipe = open("/tmp/tr1_err.log", "wb")
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
        #print(tr0_cmd) 
        tr0_proc = subprocess.Popen(
            tr0_cmd.strip().split(),
            stdout=subprocess.PIPE,
            stderr=tr0_pipe,
            env=env0)

        tr1_proc = subprocess.Popen(
            tr0_cmd.strip().split(),
            stdout=subprocess.PIPE,
            stderr=tr1_pipe,
            env=env1)

        tr0_out, tr0_err = tr0_proc.communicate()
        tr1_out, tr1_err = tr1_proc.communicate()
        sys.stderr.write('trainer 0 stderr: %s\n' % tr0_err)
        sys.stderr.write('trainer 1 stderr: %s\n' % tr1_err)
        # close trainer file
        tr0_pipe.close()
        tr1_pipe.close()
        return pickle.loads(tr0_out), pickle.loads(
            tr1_out), tr0_proc.pid, tr1_proc.pid

    def check_with_place(self,
                         model_file,
                         col_type,
                         backend="nccl",
                         path_id="0",
                         check_error_log=False,
                         need_envs={}):
        required_envs = {
            "FLAGS_fraction_of_gpu_memory_to_use": "0.15",
            "FLAGS_eager_delete_tensor_gb": "0.0",
            "PATH": os.getenv("PATH"),
            "PYTHONPATH": os.getenv("PYTHONPATH", ""),
            "LD_LIBRARY_PATH": os.getenv("LD_LIBRARY_PATH", ""),
            "LD_PRELOAD": os.getenv("LD_PRELOAD", ""),
            "GLOG_v": "0",
            "NCCL_P2P_DISABLE": "1",
            "BACKEND": backend,
            "PATH_ID": path_id
        }
        required_envs.update(need_envs)
        if check_error_log:
            required_envs["GLOG_v"] = "3"
            required_envs["GLOG_logtostderr"] = "1"
        tr0_out, tr1_out, pid0, pid1 = self._run_cluster(model_file,
                                                         required_envs)
        np.random.seed(pid0)
        input1 = np.random.random((10, 1000))
        np.random.seed(pid1)
        input2 = np.random.random((10, 1000))
        if col_type == "allgather":
            need_result = np.vstack((input1, input2))
            tr_out0 = np.vstack((tr0_out[0], tr0_out[1]))
            tr_out1 = np.vstack((tr1_out[0], tr1_out[1]))
            self.assertTrue(np.allclose(tr_out0, need_result))
            self.assertTrue(np.allclose(tr_out1, need_result))
        elif col_type == "broadcast":
            need_result = input2
            self.assertTrue(np.allclose(tr0_out, need_result))
            self.assertTrue(np.allclose(tr1_out, need_result))
        elif col_type == "reduce":
            need_result = input1 + input2
            self.assertTrue(np.allclose(tr0_out, need_result))
        elif col_type == "scatter":
            need_result = input2
            need_result1 = need_result[0:need_result.shape[0] // 2]
            need_result2 = need_result[need_result.shape[0] // 2:]
            self.assertTrue(np.allclose(tr0_out, need_result1))
            self.assertTrue(np.allclose(tr1_out, need_result2))
        elif col_type == "allreduce":
            need_result = input1 + input2
            self.assertTrue(
                np.allclose(
                    tr0_out, need_result, rtol=1e-05, atol=1e-05))
            self.assertTrue(
                np.allclose(
                    tr1_out, need_result, rtol=1e-05, atol=1e-05))
        else:
            pass