auto_parallel_grad_clip.py 13.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np
from functools import reduce

import paddle

from paddle.fluid import core
from .pass_base import PassBase, register_pass
from ..auto_parallel.reshard import Resharder
from ..auto_parallel.process_group import get_world_process_group
from ..auto_parallel.utils import is_gradient_clip_op, is_optimize_op, OP_ROLE_KEY, OpRole, _get_comm_group
from ..auto_parallel.dist_attribute import TensorDistributedAttribute, OperatorDistributedAttribute


def _get_params_grads(block):
    params_grads = []
    for op in reversed(block.ops):
        if not is_optimize_op(op):
            break
        if "Param" in op.input_names and "Grad" in op.input_names:
            param_name = op.input("Param")[0]
            grad_name = op.input("Grad")[0]
            param = block.var(param_name)
            grad = block.var(grad_name)
            params_grads.append((param, grad))
    return params_grads


def _get_dpmp_topology(origin_topology, sharding_group):
    """
    Get dpmp topology from origin_topology

    Example:
        the parallel strategy: dp4-mp2-sharding2
        the complete process_mesh:
            topology: [4, 2]
            processes: [0, 1, 2, 3, 4, 5, 6, 7]
        the dpmp topology: [2, 2]
        the sharding axis: 1
    """
    sharding_axis = 1
    dp_sharding_topology = [
        origin_topology[0] // sharding_group.nranks, sharding_group.nranks
    ]
    if dp_sharding_topology[0] == 1:
        sharding_axis = 0
        dp_sharding_topology = dp_sharding_topology[1:]

    product_dp_sharding = reduce(lambda x, y: x * y, dp_sharding_topology)
    product_topology = reduce(lambda x, y: x * y, origin_topology)

    if product_topology == product_dp_sharding:
        dpmp_topology = dp_sharding_topology
    else:
        assert product_topology % product_dp_sharding == 0
        mp_degree = product_topology // product_dp_sharding
        dpmp_topology = dp_sharding_topology + [mp_degree]

    return dpmp_topology, sharding_axis


def _get_dpmp_process_mesh(rank_id, topology, processes, sharding_group):
    """
    Get dpmp process_mesh from the complete process_mesh which apply sharding.

    Example:
        the parallel strategy: dp4-mp2-sharding2
        the complete process_mesh:
            topology: [4, 2]
            processes: [0, 1, 2, 3, 4, 5, 6, 7]
        the dpmp process_mesh is:
            1) topology: [2, 2], processes: [0, 1, 4, 5]
            2) topology: [2, 2], processes: [2, 3, 6, 7]
    """
    if sharding_group is None:
        return topology, processes

    # get dpmp_topology
    dpmp_topology, sharding_axis = _get_dpmp_topology(topology, sharding_group)

    # get all sharding_groups of ranks
    sharding_groups = []
    for rank in processes:
        group = _get_comm_group(processes, dpmp_topology, sharding_axis, rank)
        if group not in sharding_groups:
            sharding_groups.append(group)

    # get dpmp_processes
    sharding_groups = np.array(sharding_groups)
    dpmp_processes_in_sharding = None
    for i in range(sharding_groups.shape[-1]):
        if rank_id in sharding_groups[:, i]:
            dpmp_processes_in_sharding = sharding_groups[:, i]

    assert dpmp_processes_in_sharding is not None
    return dpmp_topology, list(dpmp_processes_in_sharding)


def _is_about_global_norm(rank_id, tensor_shape, topology, processes,
                          dims_mapping, sharding_group):
    # get current process_mesh where the parameter exist.
    dpmp_topology, dpmp_processes = _get_dpmp_process_mesh(
        rank_id, topology, processes, sharding_group)

    complete_shape = Resharder.compute_complete_shape(tensor_shape,
                                                      dpmp_topology,
                                                      dims_mapping)

    complete_partitions = []
    complete_param_ranks = []
    for process in dpmp_processes:
        partition_index = Resharder.compute_partition_index(
            process, complete_shape, dims_mapping, dpmp_topology,
            dpmp_processes)
        if partition_index not in complete_partitions:
            complete_partitions.append(partition_index)
            complete_param_ranks.append(process)

    return rank_id in complete_param_ranks


class ClipHelper(object):

    def __init__(self, params_grads, rank_id, block, dist_context):
        params, _ = zip(*params_grads)
        self.params = list(params)
        self.params_name = [p.name for p in self.params]
        self.rank_id = rank_id
        self.block = block
        self.dist_context = dist_context
        self.sharding_group = None
        self.world_ranks = get_world_process_group().ranks
        if hasattr(dist_context, '_sharding_group'):
            self.sharding_group = dist_context._sharding_group

    def _is_calcuate_norm(self, name):
        if not self._is_local_param(name):
            return False, []

        param = self.params[self.params_name.index(name)]
        dist_attr = self._get_dist_attr(name)
        topology = dist_attr.process_mesh.topology
        processes = dist_attr.process_mesh.processes
        dims_mapping = dist_attr.dims_mapping
        return _is_about_global_norm(self.rank_id, param.shape, topology,
                                     processes, dims_mapping,
                                     self.sharding_group)

    def _get_dist_attr(self, name):
        var = self.block.vars[name]
        return self.dist_context.get_tensor_dist_attr_for_program(var)

    def _is_local_param(self, name):
        if name not in self.params_name:
            return False
        return True

    def _is_local_var(self, name):
        dist_attr = self._get_dist_attr(name)
        assert dist_attr is not None
        return self.rank_id in dist_attr.process_mesh.processes

    def _init_dist_attr(self, op):
        op_dist_attr = OperatorDistributedAttribute()
        op_dist_attr.process_mesh = self.world_ranks
        for in_name in op.input_arg_names:
            in_var = self.block.vars[in_name]
            in_dist_attr = TensorDistributedAttribute()
            in_dist_attr.process_mesh = self.world_ranks
            in_dist_attr.dims_mapping = [-1]
            self.dist_context.set_tensor_dist_attr_for_program(
                in_var, in_dist_attr)
            op_dist_attr.set_input_dist_attr(in_name, in_dist_attr)
        for out_name in op.output_arg_names:
            out_var = self.block.vars[out_name]
            out_dist_attr = TensorDistributedAttribute()
            out_dist_attr.process_mesh = self.world_ranks
            out_dist_attr.dims_mapping = [-1]
            self.dist_context.set_tensor_dist_attr_for_program(
                out_var, out_dist_attr)
            op_dist_attr.set_output_dist_attr(out_name, out_dist_attr)
        self.dist_context.set_op_dist_attr_for_program(op, op_dist_attr)


@register_pass("auto_parallel_grad_clip")
class ClipGradByGloblNormPass(PassBase):
    """
    1. Remove norm-compute op and grad-scale op when the grad is not in current rank
       or is independent of the calculation of norm.
    2. Each rank computes its own norm value, then gets global_norm by allreduce_sum only once.
    """

    def __init__(self):
        super(ClipGradByGloblNormPass, self).__init__()
        self.set_attr("rank_id", None)
        self.set_attr("dist_context", None)

    def _check_self(self):
        if self.get_attr("dist_context") is None:
            return False
        dist_context = self.get_attr("dist_context")
        if dist_context._lr_optimizer._grad_clip is None:
            return False
        return True

    def _check_conflict(self, other_pass):
        return True

    def _apply_single_impl(self, main_program, startup_program, context):
        dist_context = self.get_attr("dist_context", None)
        rank_id = self.get_attr("rank_id", None)
        block = main_program.global_block()
        dist_params_grads = _get_params_grads(block)

        self.clip_helper = ClipHelper(dist_params_grads, rank_id, block,
                                      dist_context)
        self._remove_no_need_ops_vars(block)

    def _remove_no_need_ops_vars(self, block):

        removed_op_out_type = [
            'clip_by_norm', 'squared_l2_norm', 'square', 'reduce_sum'
        ]

        removed_op_idx = set()
        removed_tmp_var = set()
        for idx, op in enumerate(block.ops):
            if not is_gradient_clip_op(op):
                continue

            if op.type in removed_op_out_type:
                input_name = op.input("X")[0]
                if input_name.find("@GRAD") != -1:
                    #'clip_by_norm', 'squared_l2_norm', 'square'
                    param_name = input_name[:input_name.find("@GRAD")]
                    is_local = self.clip_helper._is_local_param(param_name)
                    is_calculate = self.clip_helper._is_calcuate_norm(
                        param_name)
                    if not is_local or (not is_calculate
                                        and op.type != 'clip_by_norm'):
                        removed_op_idx.add(idx)
                        removed_tmp_var.update(set(op.output_arg_names))
                else:
                    # 'reduce_sum'
                    if idx - 1 in removed_op_idx:
                        removed_op_idx.add(idx)
                        removed_tmp_var.update(set(op.output_arg_names))

            elif op.type == 'elementwise_mul':
                input_name = op.input("X")[0]
                if input_name.find("@GRAD") != -1:
                    param_name = input_name[:input_name.find("@GRAD")]
                    is_local = self.clip_helper._is_local_param(param_name)
                    if not is_local:
                        removed_op_idx.add(idx)
                        if block.ops[idx - 1].type == 'cast':
                            removed_op_idx.add(idx - 1)
                            removed_tmp_var.update(
                                set(block.ops[idx - 1].output_arg_names))

            elif op.type == 'sum':
                reserved_vars = []
                for input_name in op.input_arg_names:
                    if input_name not in removed_tmp_var and \
                        self.clip_helper._is_local_var(input_name):
                        reserved_vars.append(input_name)
                if not reserved_vars:
                    removed_op_idx.add(idx)
                    removed_tmp_var.update(set(op.output_arg_names))
                    if block.ops[idx + 1].type == 'cast':
                        removed_op_idx.add(idx + 1)
                        removed_tmp_var.update(
                            set(block.ops[idx + 1].output_arg_names))
                else:
                    op.desc.set_input("X", reserved_vars)

        for idx, op in reversed(list(enumerate(block.ops))):
            if not is_optimize_op(op):
                break
            if not is_gradient_clip_op(op):
                continue
            if idx in removed_op_idx:
                block._remove_op(idx, sync=False)

        for idx, op in reversed(list(enumerate(block.ops))):
            if not is_optimize_op(op):
                break
            if not is_gradient_clip_op(op):
                continue
            if op.type == 'sqrt':
                input_name = op.input("X")[0]
                input_var = block.vars[input_name]
                if paddle.distributed.get_world_size() > 1:
                    offset = 0
                    if input_name in removed_tmp_var:
                        removed_tmp_var.remove(input_name)
                        fill_constant_op = block._insert_op(
                            idx,
                            type='fill_constant',
                            inputs={},
                            outputs={'Out': [input_var]},
                            attrs={
                                'shape': [1],
                                'dtype': input_var.dtype,
                                'value': 0,
                                'force_cpu': False,
                                OP_ROLE_KEY: OpRole.Optimize
                            })
                        fill_constant_op._set_attr('op_namescope',
                                                   "/gradient_clip_pass")
                        offset += 1
                        self.clip_helper._init_dist_attr(fill_constant_op)

                    allreduce_op = block._insert_op(
                        idx + offset,
                        type='c_allreduce_sum',
                        inputs={'X': [input_var]},
                        outputs={'Out': [input_var]},
                        attrs={
                            'ring_id': 0,
                            'use_calc_stream': True,
                            OP_ROLE_KEY: OpRole.Optimize,
                        })
                    allreduce_op._set_attr('op_namescope',
                                           "/gradient_clip_pass")
                    self.clip_helper._init_dist_attr(allreduce_op)

        for varname in removed_tmp_var:
            block._remove_var(varname, sync=False)

        block._sync_with_cpp()