instance_norm_op.cc 24.5 KB
Newer Older
L
lvmengsi 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/instance_norm_op.h"
#include <memory>
#include <string>
#include <unordered_map>
#include "paddle/fluid/framework/data_layout.h"
#include "paddle/fluid/operators/math/math_function.h"

namespace paddle {
namespace operators {

void InstanceNormOp::InferShape(framework::InferShapeContext *ctx) const {
  PADDLE_ENFORCE_EQ(ctx->HasInput("X"), true,
                    "Input(X) of Instance Norm Op should not be null.");
  PADDLE_ENFORCE_EQ(ctx->HasInput("Scale"), true,
                    "Input(Scale) of Instance Norm Op should not be null.");
  PADDLE_ENFORCE_EQ(ctx->HasInput("Bias"), true,
                    "Input(Bias) of Instance Norm Op should not be null.");
  PADDLE_ENFORCE_EQ(ctx->HasOutput("Y"), true,
                    "Output(Y) of Instance Norm Op should not be null.");

  PADDLE_ENFORCE_EQ(
      ctx->HasOutput("SavedMean"), true,
      "Output(SavedMean) of Instance Norm Op should not be null.");
  PADDLE_ENFORCE_EQ(
      ctx->HasOutput("SavedVariance"), true,
      "Output(SavedVariance) of Instance Norm Op should not be null.");

  const auto x_dims = ctx->GetInputDim("X");
  PADDLE_ENFORCE_GE(x_dims.size(), 2,
                    "the dimension of input X must greater than or equal to 2");
  PADDLE_ENFORCE_LE(x_dims.size(), 5,
                    "the dimension of input X must smaller than or equal to 5");
  auto N = x_dims[0];
  auto C = x_dims[1];
  auto NxC = N * C;

  auto scale_dim = ctx->GetInputDim("Scale");
  auto bias_dim = ctx->GetInputDim("Bias");

  PADDLE_ENFORCE_EQ(scale_dim.size(), 1UL);
  PADDLE_ENFORCE_EQ(bias_dim.size(), 1UL);

  bool check = !((!ctx->IsRuntime()) && (framework::product(scale_dim) <= 0 ||
                                         framework::product(bias_dim) <= 0));

  if (check) {
    PADDLE_ENFORCE_EQ(scale_dim[0], C);
    PADDLE_ENFORCE_EQ(bias_dim[0], C);
  }

  ctx->SetOutputDim("Y", x_dims);
  ctx->SetOutputDim("SavedMean", {NxC});
  ctx->SetOutputDim("SavedVariance", {NxC});
  ctx->ShareLoD("X", "Y");
}

framework::OpKernelType InstanceNormOp::GetExpectedKernelType(
    const framework::ExecutionContext &ctx) const {
73
  auto input_data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X");
L
lvmengsi 已提交
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
  // By default, the type of the scale, bias, mean,
  // and var tensors should both be float. (For float or float16 input tensor)
  // or double (For double input tensor).
  auto in_param_type = framework::proto::VarType::FP32;
  if (input_data_type == framework::proto::VarType::FP64) {
    in_param_type = framework::proto::VarType::FP64;
  }
  PADDLE_ENFORCE_EQ(in_param_type, ctx.Input<Tensor>("Scale")->type(),
                    "Scale input should be of float type");
  PADDLE_ENFORCE_EQ(in_param_type, ctx.Input<Tensor>("Bias")->type(),
                    "Bias input should be of float type");

  return framework::OpKernelType(input_data_type, ctx.GetPlace());
}

void InstanceNormOpMaker::Make() {
  AddAttr<float>("epsilon", "")
      .SetDefault(1e-5)
      .AddCustomChecker([](const float &epsilon) {
        PADDLE_ENFORCE_EQ(epsilon >= 0.0f && epsilon <= 0.001f, true,
                          "'epsilon' should be between 0.0 and 0.001.");
      });
  AddInput("X", "The input tensor");
  AddInput("Scale",
           "Scale is a 1-dimensional tensor of size C "
           "that is applied to the output");
  AddInput("Bias",
           "Bias is a 1-dimensional tensor of size C "
           "that is applied to the output");
  AddOutput("Y", "result after normalization");
  AddOutput("SavedMean",
            "Mean of the current mini batch, "
            "will apply to output when training")
      .AsIntermediate();
  AddOutput("SavedVariance",
            "Variance of the current mini batch, "
            "will apply to output when training")
      .AsIntermediate();
  AddComment(R"DOC(
Instance Normalization.

Instance Norm has been implemented as disscussed in the paper:
https://arxiv.org/pdf/1607.08022.pdf
Can be used as a normalizer function for conv2d and fully_connected operations.
The required data format for this layer is as following:
NCHW `[batch, in_channels, in_height, in_width]`

)DOC");
}

template <typename T>
class InstanceNormKernel<platform::CPUDeviceContext, T>
    : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    T epsilon = static_cast<T>(ctx.Attr<float>("epsilon"));

    const auto *x = ctx.Input<Tensor>("X");
    const auto &x_dims = x->dims();

    const int N = x_dims[0];
    const int C = x_dims[1];
    const int NxC = N * C;

    const int sample_size = x->numel() / N / C;

    auto *y = ctx.Output<Tensor>("Y");
    auto *saved_mean = ctx.Output<Tensor>("SavedMean");
    auto *saved_variance = ctx.Output<Tensor>("SavedVariance");

    auto &dev_ctx = ctx.template device_context<platform::CPUDeviceContext>();
    auto *place = dev_ctx.eigen_device();

    Eigen::DSizes<int, 2> bcast(1, sample_size);
    Eigen::DSizes<int, 2> C_shape(C, 1);
    Eigen::DSizes<int, 2> NxC_shape(NxC, 1);
    Eigen::DSizes<int, 2> shape(NxC, sample_size);

    math::SetConstant<platform::CPUDeviceContext, T> set_constant;

    saved_mean->mutable_data<T>(ctx.GetPlace());
    saved_variance->mutable_data<T>(ctx.GetPlace());
    set_constant(dev_ctx, saved_mean, static_cast<T>(0));
    set_constant(dev_ctx, saved_variance, static_cast<T>(0));

    auto saved_mean_a = framework::EigenVector<T>::Flatten(*saved_mean);
    auto saved_mean_e = saved_mean_a.reshape(NxC_shape);
    auto saved_variance_a = framework::EigenVector<T>::Flatten(*saved_variance);
    auto saved_variance_e = saved_variance_a.reshape(NxC_shape);

    auto x_e = framework::EigenVector<T>::Flatten(*x);
    auto x_arr = x_e.reshape(shape);

    Eigen::DSizes<int, 1> rdims(1);

    saved_mean_e.device(*place) = x_arr.mean(rdims);
    auto saved_variance_arr =
        (x_arr - saved_mean_e.broadcast(bcast)).square().mean(rdims) + epsilon;

    saved_variance_e.device(*place) = saved_variance_arr.sqrt().inverse();

    const auto *scale = ctx.Input<Tensor>("Scale");
    const auto *bias = ctx.Input<Tensor>("Bias");
    auto scale_e = framework::EigenVector<T>::Flatten(*scale);
    auto scale_arr = scale_e.reshape(C_shape);
    auto bias_e = framework::EigenVector<T>::Flatten(*bias);
    auto bias_arr = bias_e.reshape(C_shape);

    y->mutable_data<T>(ctx.GetPlace());
    auto y_e = framework::EigenVector<T>::Flatten(*y);
    auto y_arr = y_e.reshape(shape);

    // (x - mean) * inv_std * scale + bias
    Eigen::DSizes<int, 2> bcast_param(N, sample_size);
    y_arr.device(*place) = (x_arr - saved_mean_e.broadcast(bcast)) *
                               saved_variance_e.broadcast(bcast) *
                               scale_arr.broadcast(bcast_param) +
                           bias_arr.broadcast(bcast_param);
  }
};

void InstanceNormGradOp::InferShape(framework::InferShapeContext *ctx) const {
  PADDLE_ENFORCE_EQ(ctx->HasInput("X"), true, "Input(X) should not be null");
  PADDLE_ENFORCE_EQ(ctx->HasInput("Scale"), true,
                    "Input(scale) should not be null");

  PADDLE_ENFORCE_EQ(ctx->HasInput(framework::GradVarName("Y")), true,
                    "Input(Y@GRAD) should not be null");
  PADDLE_ENFORCE_EQ(ctx->HasInput("SavedMean"), true,
                    "Input(SavedMean) should not be null");
  PADDLE_ENFORCE_EQ(ctx->HasInput("SavedVariance"), true,
                    "Input(SavedVariance) should not be null");

  // check output
  PADDLE_ENFORCE_EQ(ctx->HasOutput(framework::GradVarName("X")), true,
                    "Output(x@GRAD) should not be null");
  if (ctx->HasOutput(framework::GradVarName("Scale"))) {
    PADDLE_ENFORCE_EQ(ctx->HasOutput(framework::GradVarName("Bias")), true,
                      "Output(Scale@GRAD) and Output(Bias@GRAD) should not be "
                      "null at the same time");
  }
  const auto x_dims = ctx->GetInputDim("X");
  const int C = x_dims[1];
  ctx->SetOutputDim(framework::GradVarName("X"), x_dims);
  if (ctx->HasOutput(framework::GradVarName("Scale"))) {
    ctx->SetOutputDim(framework::GradVarName("Scale"), {C});
    ctx->SetOutputDim(framework::GradVarName("Bias"), {C});
  }
}

framework::OpKernelType InstanceNormGradOp::GetExpectedKernelType(
    const framework::ExecutionContext &ctx) const {
  const auto *var = ctx.InputVar(framework::GradVarName("Y"));
  if (var == nullptr) {
    PADDLE_THROW("cannot find Y@GRAD");
  }
  const Tensor *t = nullptr;
  if (var->IsType<Tensor>()) {
    t = &var->Get<Tensor>();
  } else if (var->IsType<LoDTensor>()) {
    t = &var->Get<LoDTensor>();
  }
  if (t == nullptr) {
    PADDLE_THROW("cannot find Y@GRAD");
  }
239 240
  return framework::OpKernelType(
      OperatorWithKernel::IndicateVarDataType(ctx, "X"), ctx.GetPlace());
L
lvmengsi 已提交
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
}

template <typename T>
class InstanceNormGradKernel<platform::CPUDeviceContext, T>
    : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    const auto *x = ctx.Input<Tensor>("X");
    const auto *d_y = ctx.Input<Tensor>(framework::GradVarName("Y"));
    const auto *scale = ctx.Input<Tensor>("Scale");
    const auto *saved_mean = ctx.Input<Tensor>("SavedMean");
    const auto *saved_inv_variance = ctx.Input<Tensor>("SavedVariance");

    const auto &x_dims = x->dims();

    const int N = x_dims[0];
    const int C = x_dims[1];
    const int NxC = N * C;
    const int sample_size = x->numel() / N / C;

    auto *d_x = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto *d_scale = ctx.Output<Tensor>(framework::GradVarName("Scale"));
    auto *d_bias = ctx.Output<Tensor>(framework::GradVarName("Bias"));
    d_x->mutable_data<T>(ctx.GetPlace());

    auto &dev_ctx = ctx.template device_context<platform::CPUDeviceContext>();
    auto *place = dev_ctx.eigen_device();

    Eigen::DSizes<int, 1> rdims(0);
    Eigen::DSizes<int, 1> mean_rdims(1);
    Eigen::DSizes<int, 2> rshape(NxC, sample_size);
    Eigen::DSizes<int, 2> bcast(1, sample_size);
    Eigen::DSizes<int, 2> C_shape(C, 1);
    Eigen::DSizes<int, 2> NxC_shape(NxC, 1);
    Eigen::DSizes<int, 2> param_shape(N, C);
    Eigen::DSizes<int, 2> shape(NxC, sample_size);

    auto scale_e = framework::EigenVector<T>::Flatten(*scale);
    auto mean_e = framework::EigenVector<T>::Flatten(*saved_mean);
    auto inv_var_e = framework::EigenVector<T>::Flatten(*saved_inv_variance);
    auto dy_e = framework::EigenVector<T>::Flatten(*d_y);
    auto x_e = framework::EigenVector<T>::Flatten(*x);

    auto scale_arr = scale_e.reshape(C_shape);
    auto mean_arr = mean_e.reshape(NxC_shape);
    auto inv_var_arr = inv_var_e.reshape(NxC_shape);
    auto dy_arr = dy_e.reshape(shape);
    auto x_arr = x_e.reshape(shape);

    auto tmp =
        (x_arr - mean_arr.broadcast(bcast)) * inv_var_arr.broadcast(bcast);

    math::SetConstant<platform::CPUDeviceContext, T> set_constant;
    // math: d_bias = np.sum(d_y, axis=(n,h,w))
    // math: d_scale = np.sum((X-mean) / inv_std * dy, axis=(n, h,w))
    if (d_scale && d_bias) {
      d_scale->mutable_data<T>(ctx.GetPlace());
      d_bias->mutable_data<T>(ctx.GetPlace());
      set_constant(dev_ctx, d_scale, static_cast<T>(0));
      set_constant(dev_ctx, d_bias, static_cast<T>(0));

      auto d_scale_e = framework::EigenVector<T>::Flatten(*d_scale);
      auto d_bias_e = framework::EigenVector<T>::Flatten(*d_bias);
      auto d_scale_data = d_scale_e.reshape(C_shape);
      auto d_bias_data = d_bias_e.reshape(C_shape);
      d_bias_data.device(*place) =
          dy_arr.sum(mean_rdims).reshape(param_shape).sum(rdims);
      d_scale_data.device(*place) =
          (tmp * dy_arr).sum(mean_rdims).reshape(param_shape).sum(rdims);
    }

    auto dy_mean = dy_arr.mean(mean_rdims).reshape(NxC_shape).broadcast(bcast);

    Eigen::DSizes<int, 2> bcast_param(N, sample_size);
    set_constant(dev_ctx, d_x, static_cast<T>(0));
    // math: d_x = scale * inv_var * d_y - scale * inv_var * np.sum(d_y,
    // axis=(h,w))
    //             - scale * (X - mean) * inv_var.pow(3) * np.sum(d_y * (X -
    //             mean),
    //             axis=(h,w))
    auto dx_e = framework::EigenVector<T>::Flatten(*d_x);
    auto dx_arr = dx_e.reshape(shape);
    dx_arr.device(*place) = scale_arr.broadcast(bcast_param) *
                            inv_var_arr.broadcast(bcast) *
                            (dy_arr - dy_mean -
                             tmp *
                                 (dy_arr * tmp)
                                     .mean(mean_rdims)
                                     .reshape(NxC_shape)
                                     .broadcast(bcast));
  }
};

void InstanceNormDoubleGradOp::InferShape(
    framework::InferShapeContext *ctx) const {
  PADDLE_ENFORCE_EQ(ctx->HasInput("X"), true, "Input(X) should not be null");
  PADDLE_ENFORCE_EQ(ctx->HasInput("Scale"), true,
                    "Input(Scale) should not be null.");
  PADDLE_ENFORCE_EQ(ctx->HasInput("SavedMean"), true,
                    "Input(SavedMean) should not be null");
  PADDLE_ENFORCE_EQ(ctx->HasInput("SavedVariance"), true,
                    "Input(SavedVariance) should not be null");
  PADDLE_ENFORCE_EQ(ctx->HasInput("DDX"), true,
                    "Input(DDX) should not be null.");
  PADDLE_ENFORCE_EQ(ctx->HasInput("DY"), true,
                    "Input(Y@GRAD) should not be null");

  // check output
  PADDLE_ENFORCE_EQ(ctx->HasOutput("DX"), true,
                    "Output(DX) should not be null");

  const auto x_dims = ctx->GetInputDim("X");
  const int C = x_dims[1];
  if (ctx->HasOutput("DX")) {
    ctx->SetOutputDim("DX", x_dims);
  }
  if (ctx->HasOutput("DScale")) {
    ctx->SetOutputDim("DScale", {C});
  }
  if (ctx->HasOutput("DDY")) {
    ctx->ShareDim("X", "DDY");
  }
}

framework::OpKernelType InstanceNormDoubleGradOp::GetExpectedKernelType(
    const framework::ExecutionContext &ctx) const {
  const auto *var = ctx.InputVar("DY");
  if (var == nullptr) {
    PADDLE_THROW("cannot find Y@GRAD");
  }
  const Tensor *t = nullptr;
  if (var->IsType<Tensor>()) {
    t = &var->Get<Tensor>();
  } else if (var->IsType<LoDTensor>()) {
    t = &var->Get<LoDTensor>();
  }
  if (t == nullptr) {
    PADDLE_THROW("cannot find Y@GRAD");
  }
380 381
  return framework::OpKernelType(
      OperatorWithKernel::IndicateVarDataType(ctx, "X"), ctx.GetPlace());
L
lvmengsi 已提交
382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493
}

template <typename T>
class InstanceNormDoubleGradKernel<platform::CPUDeviceContext, T>
    : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    const auto *X = ctx.Input<Tensor>("X");
    const auto *Scale = ctx.Input<Tensor>("Scale");
    const auto *dY = ctx.Input<Tensor>("DY");
    const auto *Saved_mean = ctx.Input<Tensor>("SavedMean");
    const auto *Saved_variance = ctx.Input<Tensor>("SavedVariance");
    const auto *ddX = ctx.Input<Tensor>("DDX");
    const auto *ddScale = ctx.Input<Tensor>("DDScale");
    const auto *ddBias = ctx.Input<Tensor>("DDBias");

    auto *dX = ctx.Output<Tensor>("DX");
    auto *dScale = ctx.Output<Tensor>("DScale");
    auto *ddY = ctx.Output<Tensor>("DDY");

    const auto &x_dims = X->dims();
    int N, C, H, W, D;
    ExtractNCWHD(x_dims, DataLayout::kNCHW, &N, &C, &H, &W, &D);
    const int sample_size = X->numel() / N / C;
    const int NxC = N * C;

    const T *mean_data = Saved_mean->data<T>();
    const T *inv_var_data = Saved_variance->data<T>();
    Tensor mean_tensor;
    Tensor inv_var_tensor;
    ConstEigenArrayMap<T> x_arr(X->data<T>(), sample_size, NxC);
    ConstEigenVectorArrayMap<T> mean_arr(mean_data, NxC);
    ConstEigenVectorArrayMap<T> inv_var_arr(inv_var_data, NxC);

    Tensor mean_tile;
    mean_tile.Resize({sample_size, NxC});
    mean_tile.mutable_data<T>(ctx.GetPlace());
    EigenArrayMap<T> mean_tile_data(mean_tile.mutable_data<T>(ctx.GetPlace()),
                                    sample_size, NxC);

    Tensor inv_var_tile;
    inv_var_tile.Resize({sample_size, NxC});
    inv_var_tile.mutable_data<T>(ctx.GetPlace());
    EigenArrayMap<T> inv_var_tile_data(
        inv_var_tile.mutable_data<T>(ctx.GetPlace()), sample_size, NxC);

    mean_tile_data = mean_arr.transpose().replicate(sample_size, 1);
    inv_var_tile_data = inv_var_arr.transpose().replicate(sample_size, 1);

    ConstEigenVectorArrayMap<T> scale_arr(Scale->data<T>(), C);

    Tensor scale_tile;
    scale_tile.Resize({sample_size, NxC});
    scale_tile.mutable_data<T>(ctx.GetPlace());
    EigenArrayMap<T> scale_tile_data(scale_tile.mutable_data<T>(ctx.GetPlace()),
                                     sample_size, NxC);
    scale_tile_data = scale_arr.transpose().replicate(sample_size, N);

    ConstEigenArrayMap<T> dy_arr(dY->data<T>(), sample_size, NxC);
    ConstEigenArrayMap<T> ddx_arr(ddX->data<T>(), sample_size, NxC);

    // math: dx = scale * ((x - mean) * inv_var / HxW * (np.mean(ddx,
    // axis=(h,w)) *
    //          np.sum(dy, axis=(h,w)) -
    //          np.sum(dy * ddx, axis=(h,w)) + 3 * np.mean(dy * (x - mean),
    //          axis=(h,w)) * inv_var.pow(2) *
    //          np.sum(ddx * (x - mean), axis=(h,w))) + inv_var.pow(3) / HxW *
    //          np.sum(ddx * (x - mean)) *
    //          (np.mean(dy, axis=(h,w)) - dy) + inv_var.pow(3) / HxW *
    //          np.sum(dy,
    //          axis=(h,w)) * (x - mean) *
    //          (np.mean(ddx, axis=(h,w)) - ddx) + ddr * (dy * inv_var - inv_var
    //          *
    //          np.mean(dy, axis=(h,w)) -
    //          inv_var.pow(3) * (x - mean) * np.mean(dy * (x - mean),
    //          axis=(h,w))))

    auto &dev_ctx = ctx.template device_context<platform::CPUDeviceContext>();
    math::SetConstant<platform::CPUDeviceContext, T> set_constant;

    Tensor x_sub_mean_mul_invstd;
    x_sub_mean_mul_invstd.Resize({sample_size, NxC});
    x_sub_mean_mul_invstd.mutable_data<T>(ctx.GetPlace());
    EigenArrayMap<T> x_sub_mean_mul_invstd_arr(
        x_sub_mean_mul_invstd.mutable_data<T>(ctx.GetPlace()), sample_size,
        NxC);
    x_sub_mean_mul_invstd_arr = (x_arr - mean_tile_data) * inv_var_tile_data;

    if (dX) {
      dX->mutable_data<T>(ctx.GetPlace());
      set_constant(dev_ctx, dX, static_cast<T>(0));
      EigenArrayMap<T> dx_arr(dX->mutable_data<T>(ctx.GetPlace()), sample_size,
                              NxC);

      if (ddX) {
        dx_arr +=
            x_sub_mean_mul_invstd_arr * inv_var_tile_data * inv_var_tile_data /
            sample_size *
            (ddx_arr.colwise().sum() * dy_arr.colwise().sum() / sample_size -
             (dy_arr * ddx_arr).colwise().sum() +
             3. * (dy_arr * x_sub_mean_mul_invstd_arr).colwise().sum() *
                 (ddx_arr * x_sub_mean_mul_invstd_arr).colwise().sum() /
                 sample_size);

        dx_arr += (ddx_arr * x_sub_mean_mul_invstd_arr).colwise().sum() /
                  sample_size * inv_var_tile_data * inv_var_tile_data *
                  (dy_arr.colwise().sum() / sample_size - dy_arr);

        dx_arr += (dy_arr * x_sub_mean_mul_invstd_arr).colwise().sum() /
                  sample_size * inv_var_tile_data * inv_var_tile_data *
                  (ddx_arr.colwise().sum() / sample_size - ddx_arr);

494
        dx_arr = scale_tile_data * dx_arr;
L
lvmengsi 已提交
495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534
      }
      if (ddScale) {
        ConstEigenVectorArrayMap<T> ddscale_arr(ddScale->data<T>(), C);

        Tensor ddscale_tile;
        ddscale_tile.Resize({sample_size, NxC});
        ddscale_tile.mutable_data<T>(ctx.GetPlace());
        EigenArrayMap<T> ddscale_tile_data(
            ddscale_tile.mutable_data<T>(ctx.GetPlace()), sample_size, NxC);
        ddscale_tile_data = ddscale_arr.transpose().replicate(sample_size, N);

        dx_arr += (dy_arr * inv_var_tile_data -
                   dy_arr.colwise().sum() / sample_size * inv_var_tile_data -
                   x_sub_mean_mul_invstd_arr * inv_var_tile_data *
                       (dy_arr * x_sub_mean_mul_invstd_arr).colwise().sum() /
                       sample_size) *
                  ddscale_tile_data;
      }
    }
    if (dScale) {
      // math: dscale = inv_var * (dy - np.mean(dy, axis=(h,w) - (x-mean) *
      //            inv_var.pow(2) * np.mean(dy * (x-mean), axis=(h,w)))) * ddx
      dScale->mutable_data<T>(ctx.GetPlace());
      set_constant(dev_ctx, dScale, static_cast<T>(0));
      EigenVectorArrayMap<T> dscale_arr(dScale->mutable_data<T>(ctx.GetPlace()),
                                        C);
      if (ddX) {
        Tensor first_grad;
        first_grad.Resize({sample_size, NxC});
        first_grad.mutable_data<T>(ctx.GetPlace());
        set_constant(dev_ctx, &first_grad, static_cast<T>(0));
        EigenArrayMap<T> first_grad_arr(
            first_grad.mutable_data<T>(ctx.GetPlace()), sample_size, NxC);

        first_grad_arr +=
            inv_var_tile_data *
            (dy_arr - dy_arr.colwise().sum() / sample_size -
             x_sub_mean_mul_invstd_arr *
                 (dy_arr * x_sub_mean_mul_invstd_arr).colwise().sum() /
                 sample_size);
535
        first_grad_arr = first_grad_arr * ddx_arr;
L
lvmengsi 已提交
536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588
        for (int nc = 0; nc < NxC; ++nc) {
          int c = nc % C;
          dscale_arr(c) += first_grad_arr.colwise().sum()(nc);
        }
      }
    }
    if (ddY) {
      // math: ddy = (x - mean) * inv_var * ddscale + ddbias +
      //           scale * inv_var * (ddx - (x - mean) * inv_var.pow(2) *
      //           np.mean(ddx * (x - mean), axis=(h,w)))
      ddY->mutable_data<T>(ctx.GetPlace());
      set_constant(dev_ctx, ddY, static_cast<T>(0));
      EigenArrayMap<T> ddy_arr(ddY->mutable_data<T>(ctx.GetPlace()),
                               sample_size, NxC);
      if (ddX) {
        ddy_arr += scale_tile_data * inv_var_tile_data *
                   (ddx_arr - ddx_arr.colwise().sum() / sample_size -
                    x_sub_mean_mul_invstd_arr *
                        (ddx_arr * x_sub_mean_mul_invstd_arr).colwise().sum() /
                        sample_size);
      }
      if (ddScale && ddBias) {
        ConstEigenVectorArrayMap<T> ddscale_arr(ddScale->data<T>(), C);
        Tensor ddscale_tile;
        ddscale_tile.Resize({sample_size, NxC});
        ddscale_tile.mutable_data<T>(ctx.GetPlace());
        EigenArrayMap<T> ddscale_tile_data(
            ddscale_tile.mutable_data<T>(ctx.GetPlace()), sample_size, NxC);
        ddscale_tile_data = ddscale_arr.transpose().replicate(sample_size, N);

        ConstEigenVectorArrayMap<T> ddbias_arr(ddBias->data<T>(), C);
        Tensor ddbias_tile;
        ddbias_tile.Resize({sample_size, NxC});
        ddbias_tile.mutable_data<T>(ctx.GetPlace());
        EigenArrayMap<T> ddbias_tile_data(
            ddbias_tile.mutable_data<T>(ctx.GetPlace()), sample_size, NxC);
        ddbias_tile_data = ddbias_arr.transpose().replicate(sample_size, N);

        ddy_arr += x_sub_mean_mul_invstd_arr * ddscale_tile_data;
        ddy_arr += ddbias_tile_data;
      }
    }
  }
};

DECLARE_INPLACE_OP_INFERER(InstanceNormDoubleGradOpInplaceInference,
                           {"DY", "DDY"});

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(instance_norm, ops::InstanceNormOp, ops::InstanceNormOpMaker,
H
hong 已提交
589 590 591
                  ops::InstanceNormOpInferVarType,
                  ops::InstanceNormGradMaker<paddle::framework::OpDesc>,
                  ops::InstanceNormGradMaker<paddle::imperative::OpBase>);
L
lvmengsi 已提交
592
REGISTER_OPERATOR(instance_norm_grad, ops::InstanceNormGradOp,
H
hong 已提交
593 594
                  ops::InstanceNormDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::InstanceNormDoubleGradMaker<paddle::imperative::OpBase>);
L
lvmengsi 已提交
595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611
REGISTER_OPERATOR(instance_norm_grad_grad, ops::InstanceNormDoubleGradOp,
                  ops::InstanceNormDoubleGradOpInplaceInference);

REGISTER_OP_CPU_KERNEL(
    instance_norm,
    ops::InstanceNormKernel<paddle::platform::CPUDeviceContext, float>,
    ops::InstanceNormKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    instance_norm_grad,
    ops::InstanceNormGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::InstanceNormGradKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    instance_norm_grad_grad,
    ops::InstanceNormDoubleGradKernel<paddle::platform::CPUDeviceContext,
                                      float>,
    ops::InstanceNormDoubleGradKernel<paddle::platform::CPUDeviceContext,
                                      double>);