io.py 15.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import os
import collections
import pickle
import six
import warnings

import paddle

# deprecated module import
from paddle import fluid
from paddle.fluid import core
from paddle.fluid.framework import Variable, _varbase_creator, _dygraph_tracer
29 30 31
from paddle.fluid.dygraph.jit import _SaveLoadConfig
from paddle.fluid.dygraph.io import _construct_program_holders, _construct_params_and_buffers
from paddle.fluid.dygraph.io import INFER_MODEL_SUFFIX, INFER_PARAMS_SUFFIX, INFER_PARAMS_INFO_SUFFIX
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59

__all__ = [
    'save',
    'load',
]


def _build_saved_state_dict(state_dict):
    save_dict = {}
    name_table = {}
    for key, value in state_dict.items():
        if isinstance(value, (Variable, core.VarBase)):
            save_dict[key] = value.numpy()
            name_table[key] = value.name
        else:
            save_dict[key] = value
    save_dict["StructuredToParameterName@@"] = name_table

    return save_dict


def _load_state_dict_from_save_inference_model(model_path, config):
    # 1. load program desc & construct _ProgramHolder
    programs = _construct_program_holders(model_path, config.model_filename)

    # 2. load layer parameters & buffers
    with fluid.dygraph.guard():
        persistable_var_dict = _construct_params_and_buffers(
60
            model_path, programs, config.params_filename, append_suffix=False)
61 62 63 64 65 66

        # 3. construct state_dict
        load_param_dict = dict()
        for var_name in persistable_var_dict:
            load_param_dict[var_name] = persistable_var_dict[var_name].numpy()

67 68 69
        # if *.info exists, we can recover structured_name
        var_info_filename = str(config.params_filename) + ".info"
        var_info_path = os.path.join(model_path, var_info_filename)
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
        if os.path.exists(var_info_path):
            with open(var_info_path, 'rb') as f:
                extra_var_info = pickle.load(f)
            structured_para_dict = dict()
            for var_name in load_param_dict:
                structured_name = extra_var_info[var_name].get(
                    'structured_name', None)
                assert structured_name is not None, "Cannot find saved variable (%s)'s structured name in saved model." % var_name
                structured_para_dict[structured_name] = load_param_dict[
                    var_name]
            load_param_dict = structured_para_dict

    return load_param_dict


def _load_state_dict_from_save_params(model_path):
    # Try to load all the files in the directory in VarBase format, 
    # the file name is used as the name of VarBase
    load_var_list = []

    # 1. load file names
    var_name_list = []
    for root, _, files in os.walk(model_path):
        for filename in files:
            file_path = os.path.join(root, filename)
            tmp_var_name = os.path.relpath(file_path, model_path)
            var_name = tmp_var_name.replace("\\", "/")
            var_name_list.append(var_name)

    # 2. create and load VarBase
    with fluid.dygraph.guard():
        for name in var_name_list:
            new_var = _varbase_creator(name=name, persistable=True)
            _dygraph_tracer().trace_op(
                type='load',
                inputs={},
                outputs={'Out': new_var},
                attrs={'file_path': os.path.join(model_path, name)})
            load_var_list.append(new_var)

    # 3. construct state_dict
    load_param_dict = dict()
    for var in load_var_list:
        load_param_dict[var.name] = var.numpy()

    return load_param_dict


118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
# NOTE(chenweihang): [ Handling of use cases of API paddle.load ]
# `paddle.load` may be used to load saved results of:
# 1. Expected cases:
#   - need [full filename] when loading
#       - paddle.save
#       - paddle.static.save
#       - paddle.fluid.save_dygraph
#   - need [prefix] when loading [compatible for paddle 2.x]
#       - paddle.jit.save
#       - paddle.static.save_inference_model
#   - need [directory] when loading [compatible for paddle 1.x]
#       - paddle.fluid.io.save_inference_model
#       - paddle.fluid.io.save_params/save_persistable
# 2. Error cases:
#   - no error case
def _build_load_path_and_config(path, config):
    # NOTE(chenweihang): If both [prefix save format] and [directory save format] exist,
    # raise error, avoid confusing behavior
    prefix_format_path = path + INFER_MODEL_SUFFIX
    prefix_format_exist = os.path.exists(prefix_format_path)
    directory_format_exist = os.path.isdir(path)
    if prefix_format_exist and directory_format_exist:
        raise ValueError(
            "The %s.pdmodel and %s directory exist at the same time, "
            "don't know which one to load, please make sure that the specified target "
            "of ``path`` is unique." % (path, path))
    elif not prefix_format_exist and not directory_format_exist:
        error_msg = "The ``path`` (%s) to load model not exists."
        # if current path is a prefix, and the path.pdparams or path.pdopt
        # is exist, users may want use `paddle.load` load the result of 
        # `fluid.save_dygraph`, we raise error here for users
        params_file_path = path + ".pdparams"
        opti_file_path = path + ".pdopt"
        if os.path.exists(params_file_path) or os.path.exists(opti_file_path):
            error_msg += " If you want to load the results saved by `fluid.save_dygraph`, " \
                "please specify the full file name, not just the file name prefix. For " \
                "example, it should be written as `paddle.load('model.pdparams')` instead of " \
                "`paddle.load('model')`."
        raise ValueError(error_msg % path)
    else:
        if prefix_format_exist:
            file_prefix = os.path.basename(path)
            model_path = os.path.dirname(path)
            if config.model_filename is not None:
                warnings.warn(
                    "When loading the result saved with the "
                    "specified file prefix, the ``model_filename`` config does "
                    "not take effect.")
            config.model_filename = file_prefix + INFER_MODEL_SUFFIX
            if config.params_filename is not None:
                warnings.warn(
                    "When loading the result saved with the "
                    "specified file prefix, the ``params_filename`` config does "
                    "not take effect.")
            config.params_filename = file_prefix + INFER_PARAMS_SUFFIX
        else:
            # Compatible with the old save_inference_model format
            model_path = path

    return model_path, config


def _parse_load_config(configs):
    supported_configs = ['model_filename', 'params_filename', 'keep_name_table']

    # input check
    for key in configs:
        if key not in supported_configs:
            raise ValueError(
                "The additional config (%s) of `paddle.load` is not supported."
                % key)

    # construct inner config
    inner_config = _SaveLoadConfig()
    inner_config.model_filename = configs.get('model_filename', None)
    inner_config.params_filename = configs.get('params_filename', None)
    inner_config.keep_name_table = configs.get('keep_name_table', None)

    return inner_config


199 200 201 202 203 204
def save(obj, path):
    '''
    Save an object to the specified path.
    
    .. note::
        Now only supports save ``state_dict`` of Layer or Optimizer.
205 206

    .. note::
207 208 209 210 211 212 213
        Different from ``paddle.jit.save``, since the save result of ``paddle.save`` is a single file, 
        there is no need to distinguish multiple saved files by adding a suffix. The argument ``path`` 
        of ``paddle.save`` will be directly used as the saved file name instead of a prefix. 
        In order to unify the saved file name format, we recommend using the paddle standard suffix:
        1. for ``Layer.state_dict`` , recommend to use ``.pdparams`` ; 
        2. for ``Optimizer.state_dict`` , recommend to use ``.pdopt`` . 
        For specific examples, please refer to API code examples.
214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
    
    Args:
        obj(Object) : The object to be saved.
        path(str) : The path of the object to be saved. 
          If saved in the current directory, the input path string will be used as the file name. 

    Returns:
        None

    Examples:
        .. code-block:: python

            import paddle

            emb = paddle.nn.Embedding(10, 10)
            layer_state_dict = emb.state_dict()
            paddle.save(layer_state_dict, "emb.pdparams")
231
            scheduler = paddle.optimizer.lr.NoamDecay(	
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
                d_model=0.01, warmup_steps=100, verbose=True)
            adam = paddle.optimizer.Adam(
                learning_rate=scheduler,
                parameters=emb.parameters())
            opt_state_dict = adam.state_dict()
            paddle.save(opt_state_dict, "adam.pdopt")
    '''

    # 1. input check
    if not isinstance(obj, dict):
        raise NotImplementedError(
            "Now only supports save state_dict of Layer or Optimizer, "
            "expect dict, but received %s." % type(obj))

    if len(obj) == 0:
        warnings.warn("The input state dict is empty, no need to save.")

    filename = os.path.basename(path)
    if filename == "":
        raise ValueError("The input path MUST be format of dirname/filename "
                         "[dirname\\filename in Windows system], but received "
                         "filename is empty string.")

    # 2. save object
    dirname = os.path.dirname(path)
    if dirname and not os.path.exists(dirname):
        os.makedirs(dirname)

    # TODO(chenweihang): supports save other object
    saved_obj = _build_saved_state_dict(obj)

    with open(path, 'wb') as f:
        pickle.dump(saved_obj, f, protocol=2)


267
def load(path, **configs):
268 269 270 271 272 273 274
    '''
    Load an object can be used in paddle from specified path.

    .. note::
        Now only supports load ``state_dict`` of Layer or Optimizer.

    .. note::
275 276 277 278
        In order to use the model parameters saved by paddle more efficiently, 
        ``paddle.load`` supports loading ``state_dict`` of Layer from the result of 
        other save APIs except ``paddle.save`` , but the argument ``path`` format is 
        different:
279 280 281 282 283 284 285 286 287 288 289 290
        1. loading from ``paddle.static.save`` or ``paddle.Model().save(training=True)`` ,  
        ``path`` needs to be a complete file name, such as ``model.pdparams`` or 
        ``model.pdopt`` ; 
        2. loading from ``paddle.jit.save`` or ``paddle.static.save_inference_model`` 
        or ``paddle.Model().save(training=False)`` , ``path`` need to be a file prefix, 
        such as ``model/mnist``, and ``paddle.load`` will get information from 
        ``mnist.pdmodel`` and ``mnist.pdiparams`` ;
        3. loading from paddle 1.x APIs ``paddle.fluid.io.save_inference_model`` or 
        ``paddle.fluid.io.save_params/save_persistables`` , ``path`` need to be a 
        directory, such as ``model`` and model is a directory.

    .. note::
291
        If you load ``state_dict`` from the saved result of static mode API such as 
292
        ``paddle.static.save`` or ``paddle.static.save_inference_model`` , 
293 294 295
        the structured variable name in dynamic mode will cannot be restored. 
        You need to set the argument ``use_structured_name=False`` when using 
        ``Layer.set_state_dict`` later.
296 297 298

    Args:
        path(str) : The path to load the target object. Generally, the path is the target 
299 300
            file path. When loading state_dict from the saved result of the API used to save 
            the inference model, the path may be a file prefix or directory.
301 302 303 304
        **configs (dict, optional): other load configuration options for compatibility. We do not 
            recommend using these configurations, they may be removed in the future. If not necessary, 
            DO NOT use them. Default None.
            The following options are currently supported:
305
            (1) model_filename (str): The inference model file name of the paddle 1.x 
306
            ``save_inference_model`` save format. Default file name is :code:`__model__` . 
307
            (2) params_filename (str): The persistable variables file name of the paddle 1.x 
308 309
            ``save_inference_model`` save format. No default file name, save variables separately 
            by default.
310 311 312 313 314 315 316 317 318 319 320 321

    Returns:
        Object(Object): a target object can be used in paddle

    Examples:
        .. code-block:: python

            import paddle

            emb = paddle.nn.Embedding(10, 10)
            layer_state_dict = emb.state_dict()
            paddle.save(layer_state_dict, "emb.pdparams")
322
            scheduler = paddle.optimizer.lr.NoamDecay(	
323 324 325 326 327 328 329 330 331 332 333
                d_model=0.01, warmup_steps=100, verbose=True)
            adam = paddle.optimizer.Adam(
                learning_rate=scheduler,
                parameters=emb.parameters())
            opt_state_dict = adam.state_dict()
            paddle.save(opt_state_dict, "adam.pdopt")

            load_layer_state_dict = paddle.load("emb.pdparams")
            load_opt_state_dict = paddle.load("adam.pdopt")
    '''
    load_result = None
334 335
    config = _parse_load_config(configs)

336 337 338 339 340 341 342 343
    if os.path.isfile(path):
        # we think path is file means this file is created by paddle.save
        with open(path, 'rb') as f:
            load_result = pickle.load(f) if six.PY2 else pickle.load(
                f, encoding='latin1')

        if not config.keep_name_table and "StructuredToParameterName@@" in load_result:
            del load_result["StructuredToParameterName@@"]
344 345 346
    else:
        # file prefix and directory are compatible cases
        model_path, config = _build_load_path_and_config(path, config)
347 348 349 350 351
        # check whether model file exists
        if config.model_filename is None:
            model_filename = '__model__'
        else:
            model_filename = config.model_filename
352
        model_file_path = os.path.join(model_path, model_filename)
353 354 355 356 357 358 359 360 361

        if os.path.exists(model_file_path):
            # Load state dict by `jit.save/io.save_inference_model` save format
            # NOTE(chenweihang): [ Compatibility of save_inference_model save format ]
            # The model saved by `save_inference_model` does not completely correspond to 
            # the information required by the `state_dict` under the dygraph. 
            # `save_inference_model` not save structured name, we need to remind 
            # the user to configure the `use_structured_name` argument when `set_state_dict`
            # NOTE(chenweihang): `jit.save` doesn't save optimizer state 
362
            load_result = _load_state_dict_from_save_inference_model(model_path,
363 364 365 366 367 368 369 370
                                                                     config)
        else:
            # load state dict by `io.save_params/persistables` save format
            # TODO(chenweihang): [ Now only supports loading parameters seperately ]
            # If users save all parameters as one file, the [ variable.name -> variable ]
            # mapping info will lost, so users need to give variable list, but users build 
            # variable list in dygraph mode is difficult, we recommend users to use
            # paddle.static.load_program_state in this case
371
            load_result = _load_state_dict_from_save_params(model_path)
372 373

    return load_result