graph_khop_sampler_op.h 13.6 KB
Newer Older
S
Siming Dai 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <stdlib.h>
#include <numeric>
#include <random>
#include <unordered_map>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/platform/place.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

template <class bidiiter>
void SampleUniqueNeighbors(bidiiter begin, bidiiter end, int num_samples) {
  int left_num = std::distance(begin, end);
  std::random_device rd;
  std::mt19937 rng{rd()};
  std::uniform_int_distribution<int> dice_distribution(
      0, std::numeric_limits<int>::max());
  for (int i = 0; i < num_samples; i++) {
    bidiiter r = begin;
    int random_step = dice_distribution(rng) % left_num;
    std::advance(r, random_step);
    std::swap(*begin, *r);
    ++begin;
    --left_num;
  }
}

template <class bidiiter>
void SampleUniqueNeighborsWithEids(bidiiter src_begin, bidiiter src_end,
                                   bidiiter eid_begin, bidiiter eid_end,
                                   int num_samples) {
  int left_num = std::distance(src_begin, src_end);
  std::random_device rd;
  std::mt19937 rng{rd()};
  std::uniform_int_distribution<int> dice_distribution(
      0, std::numeric_limits<int>::max());
  for (int i = 0; i < num_samples; i++) {
    bidiiter r1 = src_begin, r2 = eid_begin;
    int random_step = dice_distribution(rng) % left_num;
    std::advance(r1, random_step);
    std::advance(r2, random_step);
    std::swap(*src_begin, *r1);
    std::swap(*eid_begin, *r2);
    ++src_begin;
    ++eid_begin;
    --left_num;
  }
}

template <typename T>
void SampleNeighbors(const T* src, const T* dst_count, const T* src_eids,
                     std::vector<T>* inputs, std::vector<T>* outputs,
                     std::vector<T>* output_counts,
                     std::vector<T>* outputs_eids, int k, bool is_first_layer,
                     bool is_last_layer, bool return_eids) {
  const size_t bs = inputs->size();
  // Allocate the memory of outputs
  // Collect the neighbors size
  std::vector<std::vector<T>> out_src_vec;
  std::vector<std::vector<T>> out_eids_vec;
  // `sample_cumsum_sizes` record the start position and end position after the
  //  sample.
  std::vector<size_t> sample_cumsum_sizes(bs + 1);
  size_t total_neighbors = 0;
  // `total_neighbors` the size of output after the sample
  sample_cumsum_sizes[0] = total_neighbors;
  for (size_t i = 0; i < bs; i++) {
    T node = inputs->data()[i];
    T begin = dst_count[node];
    T end = dst_count[node + 1];
    int cap = end - begin;
    int sample_size = cap > k ? k : cap;
    total_neighbors += sample_size;
    sample_cumsum_sizes[i + 1] = total_neighbors;
    std::vector<T> out_src;
    out_src.resize(cap);
    out_src_vec.emplace_back(out_src);
    if (return_eids) {
      std::vector<T> out_eids;
      out_eids.resize(cap);
      out_eids_vec.emplace_back(out_eids);
    }
  }
  if (is_first_layer) {
    PADDLE_ENFORCE_GT(total_neighbors, 0,
                      platform::errors::InvalidArgument(
                          "The input nodes `X` should have at "
                          "least one neighbors, but none of the "
                          "input nodes have neighbors."));
  }
  output_counts->resize(bs);
  outputs->resize(total_neighbors);
  if (return_eids) {
    outputs_eids->resize(total_neighbors);
  }

#ifdef PADDLE_WITH_MKLML
#pragma omp parallel for
#endif
  // Sample the neighbour parallelism
  for (size_t i = 0; i < bs; i++) {
    T node = inputs->data()[i];
    T begin = dst_count[node];
    T end = dst_count[node + 1];
    int cap = end - begin;
    if (k < cap) {
      std::copy(src + begin, src + end, out_src_vec[i].begin());
      if (return_eids) {
        std::copy(src_eids + begin, src_eids + end, out_eids_vec[i].begin());
        SampleUniqueNeighborsWithEids(
            out_src_vec[i].begin(), out_src_vec[i].end(),
            out_eids_vec[i].begin(), out_eids_vec[i].end(), k);
      } else {
        SampleUniqueNeighbors(out_src_vec[i].begin(), out_src_vec[i].end(), k);
      }
      *(output_counts->data() + i) = k;
    } else {
      std::copy(src + begin, src + end, out_src_vec[i].begin());
      if (return_eids) {
        std::copy(src_eids + begin, src_eids + end, out_eids_vec[i].begin());
      }
      *(output_counts->data() + i) = cap;
    }
  }

#ifdef PADDLE_WITH_MKLML
#pragma omp parallel for
#endif
  // Copy the results parallelism
  for (size_t i = 0; i < bs; i++) {
    int sample_size = sample_cumsum_sizes[i + 1] - sample_cumsum_sizes[i];
    std::copy(out_src_vec[i].begin(), out_src_vec[i].begin() + sample_size,
              outputs->data() + sample_cumsum_sizes[i]);
    if (return_eids) {
      std::copy(out_eids_vec[i].begin(), out_eids_vec[i].begin() + sample_size,
                outputs_eids->data() + sample_cumsum_sizes[i]);
    }
  }

  if (!is_last_layer) {
    std::sort(inputs->begin(), inputs->end());
    std::vector<T> outputs_sort(outputs->size());
    std::copy(outputs->begin(), outputs->end(), outputs_sort.begin());
    std::sort(outputs_sort.begin(), outputs_sort.end());
    auto outputs_sort_end =
        std::unique(outputs_sort.begin(), outputs_sort.end());
    outputs_sort.resize(std::distance(outputs_sort.begin(), outputs_sort_end));
    std::vector<T> unique_outputs(outputs_sort.size());

    auto unique_outputs_end = std::set_difference(
        outputs_sort.begin(), outputs_sort.end(), inputs->begin(),
        inputs->end(), unique_outputs.begin());

    inputs->resize(std::distance(unique_outputs.begin(), unique_outputs_end));
    std::copy(unique_outputs.begin(), unique_outputs_end, inputs->begin());
  }
}

template <typename DeviceContext, typename T>
class GraphKhopSamplerOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    // 1. Get sample neighbors operators' inputs.
    auto* src = ctx.Input<Tensor>("Row");
    auto* dst_count = ctx.Input<Tensor>("Col_Ptr");
    auto* vertices = ctx.Input<Tensor>("X");
    std::vector<int> sample_sizes = ctx.Attr<std::vector<int>>("sample_sizes");
    bool return_eids = ctx.Attr<bool>("return_eids");

    const T* src_data = src->data<T>();
    const T* dst_count_data = dst_count->data<T>();
    const T* p_vertices = vertices->data<T>();
    const size_t bs = vertices->dims()[0];

    // 2. Get unique input nodes(X).
    std::vector<T> inputs(bs);
    std::copy(p_vertices, p_vertices + bs, inputs.begin());
    auto unique_inputs_end = std::unique(inputs.begin(), inputs.end());
    inputs.resize(std::distance(inputs.begin(), unique_inputs_end));

    // 3. Sample neighbors. We should distinguish w/o "Eids".
    std::vector<T> outputs;
    std::vector<T> output_counts;
    std::vector<T> outputs_eids;
    std::vector<std::vector<T>> dst_vec;
    dst_vec.emplace_back(inputs);
    std::vector<std::vector<T>> outputs_vec;
    std::vector<std::vector<T>> output_counts_vec;
    std::vector<std::vector<T>> outputs_eids_vec;

    const size_t num_layers = sample_sizes.size();
    bool is_last_layer = false, is_first_layer = true;

    if (return_eids) {
      auto* src_eids = ctx.Input<Tensor>("Eids");
      const T* src_eids_data = src_eids->data<T>();
      for (size_t i = 0; i < num_layers; i++) {
        if (i == num_layers - 1) {
          is_last_layer = true;
        }
        if (inputs.size() == 0) {
          break;
        }
        if (i > 0) {
          dst_vec.emplace_back(inputs);
          is_first_layer = false;
        }
        SampleNeighbors<T>(src_data, dst_count_data, src_eids_data, &inputs,
                           &outputs, &output_counts, &outputs_eids,
                           sample_sizes[i], is_first_layer, is_last_layer,
                           return_eids);
        outputs_vec.emplace_back(outputs);
        output_counts_vec.emplace_back(output_counts);
        outputs_eids_vec.emplace_back(outputs_eids);
      }
    } else {
      for (size_t i = 0; i < num_layers; i++) {
        if (i == num_layers - 1) {
          is_last_layer = true;
        }
        if (inputs.size() == 0) {
          break;
        }
        if (i > 0) {
          is_first_layer = false;
          dst_vec.emplace_back(inputs);
        }
        SampleNeighbors<T>(src_data, dst_count_data, nullptr, &inputs, &outputs,
                           &output_counts, &outputs_eids, sample_sizes[i],
                           is_first_layer, is_last_layer, return_eids);
        outputs_vec.emplace_back(outputs);
        output_counts_vec.emplace_back(output_counts);
        outputs_eids_vec.emplace_back(outputs_eids);
      }
    }

    // 4. Concat intermediate sample results.
    int64_t unique_dst_size = 0, src_size = 0;
    for (size_t i = 0; i < num_layers; i++) {
      unique_dst_size += dst_vec[i].size();
      src_size += outputs_vec[i].size();
    }

    std::vector<T> unique_dst_merge(unique_dst_size);
    std::vector<T> src_merge(src_size);
    std::vector<T> dst_sample_counts_merge(unique_dst_size);
    auto unique_dst_merge_ptr = unique_dst_merge.begin();
    auto src_merge_ptr = src_merge.begin();
    auto dst_sample_counts_merge_ptr = dst_sample_counts_merge.begin();
    // TODO(daisiming): We may try to use std::move in the future.
    for (size_t i = 0; i < num_layers; i++) {
      if (i == 0) {
        unique_dst_merge_ptr = std::copy(dst_vec[i].begin(), dst_vec[i].end(),
                                         unique_dst_merge.begin());
        src_merge_ptr = std::copy(outputs_vec[i].begin(), outputs_vec[i].end(),
                                  src_merge.begin());
        dst_sample_counts_merge_ptr =
            std::copy(output_counts_vec[i].begin(), output_counts_vec[i].end(),
                      dst_sample_counts_merge.begin());
      } else {
        unique_dst_merge_ptr = std::copy(dst_vec[i].begin(), dst_vec[i].end(),
                                         unique_dst_merge_ptr);
        src_merge_ptr = std::copy(outputs_vec[i].begin(), outputs_vec[i].end(),
                                  src_merge_ptr);
        dst_sample_counts_merge_ptr =
            std::copy(output_counts_vec[i].begin(), output_counts_vec[i].end(),
                      dst_sample_counts_merge_ptr);
      }
    }

    // 5. Return eids results.
    if (return_eids) {
      std::vector<T> eids_merge(src_size);
      auto eids_merge_ptr = eids_merge.begin();
      for (size_t i = 0; i < num_layers; i++) {
        if (i == 0) {
          eids_merge_ptr =
              std::copy(outputs_eids_vec[i].begin(), outputs_eids_vec[i].end(),
                        eids_merge.begin());
        } else {
          eids_merge_ptr = std::copy(outputs_eids_vec[i].begin(),
                                     outputs_eids_vec[i].end(), eids_merge_ptr);
        }
      }
      auto* out_eids = ctx.Output<Tensor>("Out_Eids");
      out_eids->Resize({static_cast<int>(eids_merge.size())});
      T* p_out_eids = out_eids->mutable_data<T>(ctx.GetPlace());
      std::copy(eids_merge.begin(), eids_merge.end(), p_out_eids);
    }

    int64_t num_sample_edges = std::accumulate(
        dst_sample_counts_merge.begin(), dst_sample_counts_merge.end(), 0);
    PADDLE_ENFORCE_EQ(
        src_merge.size(), num_sample_edges,
        platform::errors::PreconditionNotMet(
            "Number of sample edges dismatch, the sample kernel has error."));

    // 6. Reindex edges.
    std::unordered_map<T, T> node_map;
    std::vector<T> unique_nodes;
    size_t reindex_id = 0;
    for (size_t i = 0; i < unique_dst_merge.size(); i++) {
      T node = unique_dst_merge[i];
      unique_nodes.emplace_back(node);
      node_map[node] = reindex_id++;
    }
    for (size_t i = 0; i < src_merge.size(); i++) {
      T node = src_merge[i];
      if (node_map.find(node) == node_map.end()) {
        unique_nodes.emplace_back(node);
        node_map[node] = reindex_id++;
      }
      src_merge[i] = node_map[node];
    }
    std::vector<T> dst_merge(src_merge.size());
    size_t cnt = 0;
    for (size_t i = 0; i < unique_dst_merge.size(); i++) {
      for (T j = 0; j < dst_sample_counts_merge[i]; j++) {
        T node = unique_dst_merge[i];
        dst_merge[cnt++] = node_map[node];
      }
    }

    // 7. Get Reindex_X for input nodes.
    auto* reindex_x = ctx.Output<Tensor>("Reindex_X");
    T* p_reindex_x = reindex_x->mutable_data<T>(ctx.GetPlace());
    for (size_t i = 0; i < bs; i++) {
      p_reindex_x[i] = node_map[p_vertices[i]];
    }

    // 8. Get operator's outputs.
    auto* sample_index = ctx.Output<Tensor>("Sample_Index");
    auto* out_src = ctx.Output<Tensor>("Out_Src");
    auto* out_dst = ctx.Output<Tensor>("Out_Dst");
    sample_index->Resize({static_cast<int>(unique_nodes.size())});
    out_src->Resize({static_cast<int>(src_merge.size()), 1});
    out_dst->Resize({static_cast<int>(src_merge.size()), 1});
    T* p_sample_index = sample_index->mutable_data<T>(ctx.GetPlace());
    T* p_out_src = out_src->mutable_data<T>(ctx.GetPlace());
    T* p_out_dst = out_dst->mutable_data<T>(ctx.GetPlace());
    std::copy(unique_nodes.begin(), unique_nodes.end(), p_sample_index);
    std::copy(src_merge.begin(), src_merge.end(), p_out_src);
    std::copy(dst_merge.begin(), dst_merge.end(), p_out_dst);
  }
};

}  // namespace operators
}  // namespace paddle