requantize_mkldnn_op.cc 4.0 KB
Newer Older
X
xiaolil1 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "mkldnn.hpp"
#include "paddle/fluid/framework/data_layout_transform.h"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/operators/requantize_op.h"
#include "paddle/fluid/platform/mkldnn_helper.h"

namespace paddle {
namespace operators {

24 25
using dnnl::memory;
using dnnl::reorder;
X
xiaolil1 已提交
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
using platform::to_void_cast;
using Tensor = framework::Tensor;

template <typename T>
class ReQuantOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* input = ctx.Input<Tensor>("Input");
    auto scale_in = ctx.Attr<float>("Scale_in");
    auto scale_out = ctx.Attr<float>("Scale_out");
    auto* output = ctx.Output<Tensor>("Output");
    auto& dev_ctx =
        ctx.template device_context<platform::MKLDNNDeviceContext>();
    const auto& engine = dev_ctx.GetEngine();

41
    auto src_tz = paddle::framework::vectorize(input->dims());
X
xiaolil1 已提交
42

43 44 45 46 47
    std::string key = platform::CreateKey(src_tz, scale_in, scale_out,
                                          ctx.OutputName("Output"));
    const std::string key_prim = key + "@reorder_p";
    const std::string key_src_mem = key + "@src_mem";
    const std::string key_dst_mem = key + "@dst_mem";
X
xiaolil1 已提交
48

49 50 51 52
    std::shared_ptr<dnnl::memory> src_memory;
    std::shared_ptr<dnnl::memory> dst_memory;
    std::shared_ptr<reorder> reorder_p;
    reorder_p = std::static_pointer_cast<reorder>(dev_ctx.GetBlob(key_prim));
X
xiaolil1 已提交
53

54 55
    const T* input_data = input->data<T>();
    T* output_data = output->mutable_data<T>(ctx.GetPlace());
A
Adam 已提交
56

57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
    if (reorder_p == nullptr) {
      dnnl::primitive_attr attri;
      int mask = 0;
      float scale_shift = scale_out / scale_in;
      attri.set_output_scales(mask, {scale_shift});

      auto dst_tz = paddle::framework::vectorize(output->dims());
      dnnl::memory::data_type src_dt =
          paddle::framework::ToMKLDNNDataType(input->type());
      dnnl::memory::data_type dst_dt = src_dt;

      auto src_md =
          platform::MKLDNNMemDesc({src_tz}, src_dt, MKLDNNMemoryFormat::nhwc);
      src_memory = std::make_shared<dnnl::memory>(src_md, engine,
                                                  to_void_cast<T>(input_data));

      auto dst_md =
          platform::MKLDNNMemDesc({dst_tz}, dst_dt, MKLDNNMemoryFormat::nhwc);
      dst_memory = std::make_shared<dnnl::memory>(dst_md, engine,
                                                  to_void_cast<T>(output_data));

      auto reorder_pd =
          reorder::primitive_desc(*src_memory, *dst_memory, attri);
      reorder_p = std::make_shared<reorder>(reorder_pd);

      dev_ctx.SetBlob(key_prim, reorder_p);
      dev_ctx.SetBlob(key_src_mem, src_memory);
      dev_ctx.SetBlob(key_dst_mem, dst_memory);
    } else {
      src_memory =
          std::static_pointer_cast<dnnl::memory>(dev_ctx.GetBlob(key_src_mem));
      src_memory->set_data_handle(to_void_cast<T>(input_data));

      dst_memory =
          std::static_pointer_cast<dnnl::memory>(dev_ctx.GetBlob(key_dst_mem));
      dst_memory->set_data_handle(output_data);
    }

    dnnl::stream astream(engine);
    reorder_p->execute(astream, *src_memory, *dst_memory);
A
Adam 已提交
97
    astream.wait();
X
xiaolil1 已提交
98

99 100
    output->set_layout(framework::DataLayout::kMKLDNN);
    output->set_format(platform::GetMKLDNNFormat(*dst_memory));
X
xiaolil1 已提交
101 102 103 104 105 106 107 108 109 110
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

REGISTER_OP_KERNEL(requantize, MKLDNN, ::paddle::platform::CPUPlace,
                   ops::ReQuantOpKernel<int8_t>, ops::ReQuantOpKernel<uint8_t>);