test_modelruntime_ipu.py 5.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
#  Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import unittest

import numpy as np
import paddle
from op_test_ipu import IPUOpTest


class SimpleLayer(paddle.nn.Layer):
    def __init__(self):
        super(SimpleLayer, self).__init__()
        self.conv = paddle.nn.Conv2D(
            in_channels=3, out_channels=1, kernel_size=2, stride=1
        )

    def forward(self, x, target=None):
        x = self.conv(x)
        x = paddle.fluid.layers.flatten(x, axis=1)
        if target is not None:
            x = paddle.fluid.layers.softmax(x)
            loss = paddle.fluid.layers.cross_entropy(x, target)
            return x, loss
        return x


class TestBase(IPUOpTest):
    def setUp(self):
        self.ipu_model = None
        self.set_attrs()
        if 'POPLAR_IPUMODEL' in os.environ:
            self.ipu_model = os.environ['POPLAR_IPUMODEL']
            del os.environ['POPLAR_IPUMODEL']

    def set_attrs(self):
        self.timeout = 0.0
        self.batch_size = 8

    def tearDown(self):
        if getattr(self, 'ipu_model', None):
            os.environ['POPLAR_IPUMODEL'] = self.ipu_model
        paddle.framework.core.IpuBackend.get_instance().reset()

    def generate_feed(self):
        return {
            "X": np.random.rand(8, 3, 10, 10).astype(np.float32),
            "Y": np.random.randint(0, 10, [8], dtype="int64"),
        }

    @IPUOpTest.static_graph
    def build_model(self):
        x = paddle.static.data(
            name='X', shape=[self.batch_size, 3, 10, 10], dtype='float32'
        )
        label = paddle.static.data(
            name='Y', shape=[self.batch_size], dtype='int64'
        )
        model = SimpleLayer()
        pred, loss = model(x, label)
        self.feed_list = [x.name, label.name]
        self.fetch_list = [pred.name, loss.name]

    def reset_seeds(self):

        np.random.seed(self.SEED)
        paddle.seed(self.SEED)
        self.main_prog.random_seed = self.SEED
        self.startup_prog.random_seed = self.SEED

    def _test(self, use_ipu=False):

        self.reset_seeds()
        place = paddle.IPUPlace() if use_ipu else paddle.CPUPlace()

        executor = paddle.static.Executor(place)
        executor.run(self.startup_prog)

        if use_ipu:
            paddle.set_device('ipu')
            ipu_strategy = paddle.static.IpuStrategy()
            ipu_strategy.set_graph_config(
                num_ipus=1,
                is_training=False,
                micro_batch_size=self.batch_size,
                enable_manual_shard=False,
            )
            ipu_strategy.set_options(
                {
                    'enable_model_runtime_executor': True,
                    'timeout_ms': self.timeout,
                }
            )
            program = paddle.static.IpuCompiledProgram(
                self.main_prog, ipu_strategy=ipu_strategy
            ).compile(self.feed_list, self.fetch_list)
        else:
            program = self.main_prog

        epochs = 10
        preds = []
        losses = []
        for epoch in range(epochs):
            feed = self.generate_feed()
            dy_batch = feed["X"].shape[0]
            if not use_ipu:
                # padding inputs
                pad_batch = self.batch_size - dy_batch
                for k, v in feed.items():
                    pad_size = tuple(
                        (
                            (0, 0 if i != 0 else pad_batch)
                            for i in range(len(v.shape))
                        )
                    )
                    feed[k] = np.pad(v, pad_size, 'constant', constant_values=0)

            pred, loss = executor.run(
                program, feed=feed, fetch_list=self.fetch_list
            )
            if not use_ipu:
                pred = pred[0:dy_batch]
                loss = loss[0:dy_batch]

            preds.append(pred)
            losses.append(loss)

        return np.concatenate(preds, axis=0), np.concatenate(losses, axis=0)

    def test_infer(self):
        self.build_model()
        ipu_pred, ipu_loss = self._test(True)
        cpu_pred, cpu_loss = self._test(False)
        np.testing.assert_allclose(
            ipu_pred.flatten(), cpu_pred.flatten(), rtol=1e-05, atol=1e-4
        )
        np.testing.assert_allclose(
            ipu_loss.flatten(), cpu_loss.flatten(), rtol=1e-05, atol=1e-4
        )


class TestAutoBatch(TestBase):
    def set_attrs(self):
        self.timeout = 0.01
        # fixed batch
        self.batch_size = 8

    def generate_feed(self):
        # generate dynamic batch
        batch = np.random.randint(1, self.batch_size)
        return {
            "X": np.random.rand(batch, 3, 10, 10).astype(np.float32),
            "Y": np.random.randint(0, 10, [batch], dtype="int64"),
        }


if __name__ == "__main__":
    unittest.main()