send_recv.py 6.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np
from paddle.fluid.layer_helper import LayerHelper
from paddle.fluid.framework import _non_static_mode, _in_legacy_dygraph, in_dygraph_mode
from paddle.fluid.framework import Variable
from paddle.fluid.data_feeder import check_variable_and_dtype, check_type, check_dtype, convert_dtype
from paddle import _C_ops

from .utils import convert_out_size_to_list, get_out_size_tensor_inputs


def send_u_recv(x,
                src_index,
                dst_index,
                pool_type="sum",
                out_size=None,
                name=None):
    """

    Graph Learning message passing api.

    This api is mainly used in Graph Learning domain, and the main purpose is to reduce intermediate memory 
    consumption in the process of message passing. Take `x` as the input tensor, we first use `src_index`
    to gather the corresponding data, and then use `dst_index` to update the corresponding position of output tensor 
    in different pooling types, like sum, mean, max, or min. Besides, we can use `out_size` to set necessary output shape.

    .. code-block:: text

           Given:

           X = [[0, 2, 3],
                [1, 4, 5],
                [2, 6, 7]]

           src_index = [0, 1, 2, 0]

           dst_index = [1, 2, 1, 0]

           pool_type = "sum"

           out_size = None

           Then:

           Out = [[0, 2, 3],
                  [2, 8, 10],
                  [1, 4, 5]]

    Args:
        x (Tensor): The input tensor, and the available data type is float32, float64, int32, int64.
        src_index (Tensor): An 1-D tensor, and the available data type is int32, int64.
        dst_index (Tensor): An 1-D tensor, and should have the same shape as `src_index`. 
                            The available data type is int32, int64. 
        pool_type (str): Different pooling types, including `sum`, `mean`, `max`, `min`.
                         Default value is `sum`.
        out_size (int|Tensor|None): We can set `out_size` to get necessary output shape. If not set or 
                                    out_size is smaller or equal to 0, then this input will not be used.
                                    Otherwise, `out_size` should be equal with or larger than 
                                    max(dst_index) + 1.
        name (str, optional): Name for the operation (optional, default is None).
                              For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): The output tensor, should have the same shape and same dtype as input tensor `x`. 
                      If `out_size` is set correctly, then it should have the same shape as `x` except 
                      the 0th dimension.

    Examples:

        .. code-block:: python

            import paddle

            x = paddle.to_tensor([[0, 2, 3], [1, 4, 5], [2, 6, 7]], dtype="float32")
            indexes = paddle.to_tensor([[0, 1], [1, 2], [2, 1], [0, 0]], dtype="int32")
            src_index = indexes[:, 0]
            dst_index = indexes[:, 1]
            out = paddle.geometric.send_u_recv(x, src_index, dst_index, pool_type="sum")
            # Outputs: [[0., 2., 3.], [2., 8., 10.], [1., 4., 5.]]

            x = paddle.to_tensor([[0, 2, 3], [1, 4, 5], [2, 6, 7]], dtype="float32")
            indexes = paddle.to_tensor([[0, 1], [2, 1], [0, 0]], dtype="int32")
            src_index = indexes[:, 0]
            dst_index = indexes[:, 1]
            out_size = paddle.max(dst_index) + 1
            out = paddle.geometric.send_u_recv(x, src_index, dst_index, pool_type="sum", out_size=out_size)
            # Outputs: [[0., 2., 3.], [[2., 8., 10.]]]

            x = paddle.to_tensor([[0, 2, 3], [1, 4, 5], [2, 6, 7]], dtype="float32")
            indexes = paddle.to_tensor([[0, 1], [2, 1], [0, 0]], dtype="int32")
            src_index = indexes[:, 0]
            dst_index = indexes[:, 1]
            out = paddle.geometric.send_u_recv(x, src_index, dst_index, pool_type="sum")
            # Outputs: [[0., 2., 3.], [2., 8., 10.], [0., 0., 0.]]

    """

    if pool_type not in ["sum", "mean", "max", "min"]:
        raise ValueError(
            "pool_type should be `sum`, `mean`, `max` or `min`, but received %s"
            % pool_type)

    # TODO(daisiming): Should we add judgement for out_size: max(dst_index) + 1.

    if _in_legacy_dygraph():
        out_size = convert_out_size_to_list(out_size)
        out, tmp = _C_ops.graph_send_recv(x, src_index,
                                          dst_index, None, 'pool_type',
                                          pool_type.upper(), 'out_size',
                                          out_size)
        return out
    if in_dygraph_mode():
        out_size = convert_out_size_to_list(out_size)
        return _C_ops.final_state_graph_send_recv(x, src_index, dst_index,
                                                  pool_type.upper(), out_size)

    check_variable_and_dtype(x, "X", ("float32", "float64", "int32", "int64"),
                             "graph_send_recv")
    check_variable_and_dtype(src_index, "Src_index", ("int32", "int64"),
                             "graph_send_recv")
    check_variable_and_dtype(dst_index, "Dst_index", ("int32", "int64"),
                             "graph_send_recv")
    if out_size:
        check_type(out_size, 'out_size', (int, np.int32, np.int64, Variable),
                   'graph_send_recv')
    if isinstance(out_size, Variable):
        check_dtype(out_size.dtype, 'out_size', ['int32', 'int64'],
                    'graph_send_recv')

    helper = LayerHelper("send_u_recv", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    dst_count = helper.create_variable_for_type_inference(dtype="int32",
                                                          stop_gradient=True)

    inputs = {"X": x, "Src_index": src_index, "Dst_index": dst_index}
    attrs = {"pool_type": pool_type.upper()}
    get_out_size_tensor_inputs(inputs=inputs,
                               attrs=attrs,
                               out_size=out_size,
                               op_type='graph_send_recv')

    helper.append_op(type="graph_send_recv",
                     inputs=inputs,
                     outputs={
                         "Out": out,
                         "Dst_count": dst_count
                     },
                     attrs=attrs)
    return out