tensorrt_engine_op.cc 4.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#ifdef PADDLE_WITH_CUDA

#include "paddle/fluid/operators/tensorrt_engine_op.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
20
#include "paddle/fluid/inference/tensorrt/engine.h"
21 22 23 24 25
#include "paddle/fluid/inference/utils/singleton.h"

namespace paddle {
namespace operators {

26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
using inference::Singleton;
using inference::tensorrt::TRT_EngineManager;

using FluidDT = framework::proto::VarType_Type;
using TRT_DT = nvinfer1::DataType;

namespace {

TRT_DT FluidDataType2TRT(FluidDT type) {
  switch (type) {
    case FluidDT::VarType_Type_FP32:
      return TRT_DT::kFLOAT;
    case FluidDT::VarType_Type_INT32:
      return TRT_DT::kINT32;
    default:
      return TRT_DT::kINT32;
  }
  PADDLE_THROW("unkown type");
  return TRT_DT::kINT32;
}

nvinfer1::Dims Vec2TRT_Dims(const std::vector<int64_t> &shape) {
  PADDLE_ENFORCE_GT(shape.size(), 1UL,
                    "TensorRT' tensor input requires at least 2 dimensions");
  PADDLE_ENFORCE_LE(shape.size(), 4UL,
                    "TensorRT' tensor input requires at most 4 dimensions");

  switch (shape.size()) {
    case 2:
      return nvinfer1::Dims2(shape[0], shape[1]);
    case 3:
      return nvinfer1::Dims3(shape[0], shape[1], shape[2]);
    case 4:
      return nvinfer1::Dims4(shape[0], shape[1], shape[2], shape[3]);
    default:
      return nvinfer1::Dims();
  }
  return nvinfer1::Dims();
}

}  // namespace

68 69 70
template <typename DeviceContext, typename T>
void paddle::operators::TensorRTEngineKernel<DeviceContext, T>::Prepare(
    const framework::ExecutionContext &context) const {
71
  VLOG(4) << "Prepare engine";
72
  // Get the ProgramDesc and pass to convert.
73 74
  framework::proto::BlockDesc block_desc;
  block_desc.ParseFromString(context.Attr<std::string>("subgraph"));
75 76
  max_batch_ = context.Attr<int>("max_batch");
  auto max_workspace = context.Attr<int>("max_workspace");
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
  engine_ = Singleton<TRT_EngineManager>::Global().Create(
      max_batch_, max_workspace, &stream_);
  engine_->InitNetwork();

  framework::BlockDesc block(nullptr /*programdesc*/, &block_desc);
  // Add inputs
  VLOG(4) << "declare inputs";
  for (auto &input : context.Inputs("Xs")) {
    VLOG(4) << "declare input " << input;
    auto *var = block.FindVar(input);
    PADDLE_ENFORCE_EQ(var->GetType(), FluidDT::VarType_Type_LOD_TENSOR,
                      "TensorRT engine only takes LoDTensor as input");
    auto shape = var->GetShape();
    engine_->DeclareInput(
        input, FluidDataType2TRT(
                   var->Proto()->type().lod_tensor().tensor().data_type()),
        Vec2TRT_Dims(var->GetShape()));
  }

96
  // TODO(Superjomn) parameters should be passed after analysised from outside.
97
  inference::Singleton<inference::tensorrt::OpConverter>::Global().ConvertBlock(
98 99 100 101 102 103 104 105 106
      block_desc, {}, context.scope(), engine_);

  // Add outputs
  VLOG(4) << "declare outputs";
  for (auto &output : context.Outputs("Ys")) {
    VLOG(4) << "declare output " << output;
    engine_->DeclareOutput(output);
  }

107 108 109 110 111 112 113 114
  engine_->FreezeNetwork();
}

class TensorRTEngineOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("Xs", "A list of inputs.").AsDuplicable();
    AddOutput("Ys", "A list of outputs").AsDuplicable();
115 116 117
    AddAttr<std::string>("subgraph", "the subgraph.");
    AddAttr<int>("max_batch", "the maximum batch size.");
    AddAttr<int>("max_workspace", "the maximum batch size.");
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
    AddComment("TensorRT engine operator.");
  }
};

class TensorRTEngineInferVarType : public framework::VarTypeInference {
 public:
  void operator()(const framework::OpDesc &op_desc,
                  framework::BlockDesc *block) const override {}
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

REGISTER_OPERATOR(tensorrt_engine, ops::TensorRTEngineOp,
                  ops::TensorRTEngineOpMaker, ops::TensorRTEngineOpMaker);

REGISTER_OP_CPU_KERNEL(
    tensorrt_engine,
    ops::TensorRTEngineKernel<paddle::platform::CPUDeviceContext, float>,
    ops::TensorRTEngineKernel<paddle::platform::CPUDeviceContext, double>,
    ops::TensorRTEngineKernel<paddle::platform::CPUDeviceContext, int>,
    ops::TensorRTEngineKernel<paddle::platform::CPUDeviceContext, int64_t>);

#endif  // PADDLE_WITH_CUDA