rnn_functor.h 13.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include "paddle/fluid/memory/memcpy.h"
18
#include "paddle/phi/backends/gpu/gpu_dnn.h"
19 20
#include "paddle/phi/common/place.h"
#include "paddle/phi/core/dense_tensor.h"
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

namespace phi {

#ifdef PADDLE_WITH_HIP
using gpuRNNMode_t = miopenRNNMode_t;
using gpuDnnHandle_t = miopenHandle_t;
using gpuDnnDataType_t = miopenDataType_t;
#else
using gpuRNNMode_t = cudnnRNNMode_t;
using gpuDnnHandle_t = cudnnHandle_t;
using gpuDnnDataType_t = cudnnDataType_t;
#endif

class RNNDescriptors {
 public:
  RNNDescriptors(int seq_length,
                 int batch_size,
                 int input_size,
                 int hidden_size,
                 int num_layers,
                 float dropout_prob,
                 int seed,
                 int weight_numel,
                 gpuRNNMode_t mode,
                 bool is_bidirec,
                 bool is_test)
      : seq_length_(seq_length),
        batch_size_(batch_size),
        input_size_(input_size),
        hidden_size_(hidden_size),
        num_layers_(num_layers),
        dropout_prob_(dropout_prob),
        seed_(seed),
        weight_numel_(weight_numel),
        mode_(mode),
        is_bidirec_(is_bidirec),
        is_test_(is_test) {}

  template <typename T>
  void Create(const gpuDnnHandle_t &handle,
61
              const DeviceContext &dev_ctx,
62 63 64 65 66
              const std::vector<int> &sequence_length,
              size_t *workspace_size,
              size_t *reserve_size,
              DenseTensor *dropout_state) {
    int numDirections = is_bidirec_ ? 2 : 1;
67
    gpuDnnDataType_t cudnn_type = phi::backends::gpu::CudnnDataType<T>::type;
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
    // ------------------- cudnn x, y descriptors ---------------------
    std::vector<int> dims_x = {batch_size_, input_size_, 1};
    std::vector<int> strides_x = {input_size_, 1, 1};
    std::vector<int> dims_y = {batch_size_, hidden_size_ * numDirections, 1};
    std::vector<int> strides_y = {hidden_size_ * numDirections, 1, 1};
    for (int i = 0; i < seq_length_; ++i) {
      x_descs_.emplace_back(x_desc_.descriptor<T>(dims_x, strides_x));
      y_descs_.emplace_back(y_desc_.descriptor<T>(dims_y, strides_y));
    }

#if defined(PADDLE_WITH_CUDA) && CUDNN_VERSION >= 7201
    if (!sequence_length.empty()) {
      x_seq_desc_.descriptor<T>(
          seq_length_, batch_size_, input_size_, true, sequence_length);
      y_seq_desc_.descriptor<T>(seq_length_,
                                batch_size_,
                                hidden_size_ * numDirections,
                                true,
                                sequence_length);
    }
#endif

    // ------------------- cudnn hx, hy, cx, cy descriptors----------
    std::vector<int> dims_hx = {
        num_layers_ * numDirections, batch_size_, hidden_size_};
    std::vector<int> strides_hx = {hidden_size_ * batch_size_, hidden_size_, 1};
    init_h_desc_.descriptor<T>(dims_hx, strides_hx);
    init_c_desc_.descriptor<T>(dims_hx, strides_hx);
    last_h_desc_.descriptor<T>(dims_hx, strides_hx);
    last_c_desc_.descriptor<T>(dims_hx, strides_hx);

    // ------------------- cudnn dropout descriptors ---------------------
    size_t state_size;
Z
zyfncg 已提交
101
    bool is_initialized = dropout_state->initialized();
102 103 104
    if (!is_test_ && !is_initialized) {
#ifdef PADDLE_WITH_HIP
      PADDLE_ENFORCE_GPU_SUCCESS(
105
          phi::dynload::miopenDropoutGetStatesSize(handle, &state_size));
106 107
#else
      PADDLE_ENFORCE_GPU_SUCCESS(
108
          phi::dynload::cudnnDropoutGetStatesSize(handle, &state_size));
109
#endif
110 111
      dropout_state->Resize({static_cast<int64_t>(state_size)});
      dev_ctx.template Alloc<uint8_t>(dropout_state);
112 113
    }
    dropout_desc_.descriptor(handle,
114
                             dev_ctx.GetPlace(),
115 116 117 118 119 120 121 122
                             is_initialized,
                             dropout_prob_,
                             is_test_ ? nullptr : dropout_state,
                             seed_,
                             state_size);

// ------------------- cudnn rnn descriptors ---------------------
#ifdef PADDLE_WITH_HIP
123 124 125 126 127 128 129 130 131 132 133
    PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::miopenSetRNNDescriptor_V2(
        rnn_desc_.desc(),
        hidden_size_,
        num_layers_,
        dropout_desc_.desc(),
        miopenRNNlinear,
        is_bidirec_ ? miopenRNNbidirection : miopenRNNunidirection,
        mode_,
        miopenRNNwithBias,
        miopenRNNdefault,
        cudnn_type));
134
#elif CUDNN_VERSION >= 6000
135 136 137 138 139 140 141 142 143 144 145
    PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::cudnnSetRNNDescriptor_v6(
        handle,
        rnn_desc_.desc(),
        hidden_size_,
        num_layers_,
        dropout_desc_.desc(),
        CUDNN_LINEAR_INPUT,
        is_bidirec_ ? CUDNN_BIDIRECTIONAL : CUDNN_UNIDIRECTIONAL,
        mode_,
        CUDNN_RNN_ALGO_STANDARD,
        cudnn_type));
146
#else
147
    PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::cudnnSetRNNDescriptor(
148 149 150 151 152 153 154 155 156 157 158 159
        rnn_desc_.desc(),
        hidden_size_,
        num_layers_,
        dropout_desc_.desc(),
        CUDNN_LINEAR_INPUT,
        is_bidirec_ ? CUDNN_BIDIRECTIONAL : CUDNN_UNIDIRECTIONAL,
        mode_,
        cudnn_type));
#endif

#if defined(PADDLE_WITH_CUDA) && CUDNN_VERSION >= 7201
    if (!sequence_length.empty()) {
160 161
      PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::cudnnSetRNNPaddingMode(
          rnn_desc_.desc(), CUDNN_RNN_PADDED_IO_ENABLED));
162 163 164 165 166 167
    }
#endif

    // ------------------- cudnn weights_size ---------------------
    size_t weights_size_;
#ifdef PADDLE_WITH_HIP
168 169
    PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::miopenGetRNNParamsSize(
        handle, rnn_desc_.desc(), x_descs_[0], &weights_size_, cudnn_type));
170
#else
171
    PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::cudnnGetRNNParamsSize(
172 173 174 175 176 177 178 179
        handle, rnn_desc_.desc(), x_descs_[0], &weights_size_, cudnn_type));
#endif
    PADDLE_ENFORCE_EQ(
        weights_size_,
        sizeof(T) * weight_numel_,
        phi::errors::InvalidArgument(
            "The cudnn rnn and setting weight size should be same."));
    // ------------------- cudnn weight descriptors ---------------------
180
    auto layout = phi::backends::gpu::DataLayout::kNCHW;
181 182 183 184 185 186
    int dim_tmp = weights_size_ / sizeof(T);
    std::vector<int> dim_w = {dim_tmp, 1, 1};
    weight_desc_.descriptor<T>(layout, dim_w);
// ------------------- cudnn workspace, reserve size ---------------------
#ifdef PADDLE_WITH_HIP
    PADDLE_ENFORCE_GPU_SUCCESS(
187 188 189 190 191 192 193
        phi::dynload::miopenGetRNNWorkspaceSize(handle,
                                                rnn_desc_.desc(),
                                                seq_length_,
                                                x_descs_.data(),
                                                workspace_size));
    PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::miopenGetRNNTrainingReserveSize(
        handle, rnn_desc_.desc(), seq_length_, x_descs_.data(), reserve_size));
194 195
#else
    PADDLE_ENFORCE_GPU_SUCCESS(
196 197 198 199 200 201 202
        phi::dynload::cudnnGetRNNWorkspaceSize(handle,
                                               rnn_desc_.desc(),
                                               seq_length_,
                                               x_descs_.data(),
                                               workspace_size));
    PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::cudnnGetRNNTrainingReserveSize(
        handle, rnn_desc_.desc(), seq_length_, x_descs_.data(), reserve_size));
203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
#endif
  }
#ifdef PADDLE_WITH_HIP
  miopenTensorDescriptor_t *x_descs() { return x_descs_.data(); }
  miopenTensorDescriptor_t *y_descs() { return y_descs_.data(); }
  miopenTensorDescriptor_t init_h_desc() { return init_h_desc_.desc(); }
  miopenTensorDescriptor_t init_c_desc() { return init_c_desc_.desc(); }
  miopenTensorDescriptor_t last_h_desc() { return last_h_desc_.desc(); }
  miopenTensorDescriptor_t last_c_desc() { return last_c_desc_.desc(); }
  miopenRNNDescriptor_t rnn_desc() { return rnn_desc_.desc(); }
  miopenDropoutDescriptor_t dropout_desc() { return dropout_desc_.desc(); }
  miopenTensorDescriptor_t weight_desc() { return weight_desc_.desc(); }
#else
  cudnnTensorDescriptor_t *x_descs() { return x_descs_.data(); }
  cudnnTensorDescriptor_t *y_descs() { return y_descs_.data(); }
#if CUDNN_VERSION >= 7201
  cudnnRNNDataDescriptor_t x_seq_desc() { return x_seq_desc_.desc(); }
  cudnnRNNDataDescriptor_t y_seq_desc() { return y_seq_desc_.desc(); }
#endif
  cudnnTensorDescriptor_t init_h_desc() { return init_h_desc_.desc(); }
  cudnnTensorDescriptor_t init_c_desc() { return init_c_desc_.desc(); }
  cudnnTensorDescriptor_t last_h_desc() { return last_h_desc_.desc(); }
  cudnnTensorDescriptor_t last_c_desc() { return last_c_desc_.desc(); }
  cudnnRNNDescriptor_t rnn_desc() { return rnn_desc_.desc(); }
  cudnnDropoutDescriptor_t dropout_desc() { return dropout_desc_.desc(); }
  cudnnFilterDescriptor_t weight_desc() { return weight_desc_.desc(); }
#endif

 private:
  int seq_length_;
  int batch_size_;
  int input_size_;
  int hidden_size_;
  int num_layers_;
  float dropout_prob_;
  int seed_;
  int weight_numel_;
  gpuRNNMode_t mode_;
  bool is_bidirec_;
  bool is_test_;
#ifdef PADDLE_WITH_HIP
  std::vector<miopenTensorDescriptor_t> x_descs_;
  std::vector<miopenTensorDescriptor_t> y_descs_;
#else
  std::vector<cudnnTensorDescriptor_t> x_descs_;
  std::vector<cudnnTensorDescriptor_t> y_descs_;
#endif

251 252
  phi::backends::gpu::ScopedTensorDescriptor x_desc_;
  phi::backends::gpu::ScopedTensorDescriptor y_desc_;
253
#if defined(PADDLE_WITH_CUDA) && CUDNN_VERSION >= 7201
254 255
  phi::backends::gpu::ScopedRNNTensorDescriptor x_seq_desc_;
  phi::backends::gpu::ScopedRNNTensorDescriptor y_seq_desc_;
256
#endif
257 258 259 260 261 262 263
  phi::backends::gpu::ScopedTensorDescriptor init_h_desc_;
  phi::backends::gpu::ScopedTensorDescriptor init_c_desc_;
  phi::backends::gpu::ScopedTensorDescriptor last_h_desc_;
  phi::backends::gpu::ScopedTensorDescriptor last_c_desc_;
  phi::backends::gpu::ScopedDropoutDescriptor dropout_desc_;
  phi::backends::gpu::ScopedFilterDescriptor weight_desc_;
  phi::backends::gpu::ScopedRNNDescriptor rnn_desc_;
264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364
};

template <typename T, typename Type>
bool IsContinuous(const Type &weight_list) {
  bool continuous = true;
  for (size_t i = 0; i < weight_list.size() - 1; ++i) {
    auto *in_data = weight_list[i]->template data<T>();
    auto *in_after_data = weight_list[i + 1]->template data<T>();
    auto in_size = weight_list[i]->numel();
    bool temp = in_data + in_size == in_after_data;
    continuous = continuous && temp;
  }
  return continuous;
}

template <typename T>
void WeightToTensor(const Place &place,
                    gpuStream_t stream,
                    const std::vector<const DenseTensor *> &weight_list,
                    DenseTensor *weight) {
  auto weight_data = weight->data<T>();
  int weight_offset = 0;
  for (size_t i = 0; i < weight_list.size(); ++i) {
    const T *in_data = weight_list[i]->data<T>();
    auto in_size = weight_list[i]->numel();

    paddle::memory::Copy(weight->place(),
                         weight_data + weight_offset,
                         weight_list[i]->place(),
                         in_data,
                         in_size * sizeof(T),
                         stream);
    weight_offset += in_size;
  }
}

#ifdef PADDLE_WITH_HIP
template <typename T>
void WeightListToTensor(const Place &place,
                        gpuStream_t stream,
                        const std::vector<DenseTensor> &tensor_list,
                        DenseTensor *weight_whole,
                        const size_t offset = 0UL) {
  size_t weight_offset = offset;
  auto weight_data = weight_whole->data<T>();

  for (size_t i = 0; i < tensor_list.size(); ++i) {
    const T *in_data = tensor_list[i].data<T>();
    auto in_size = tensor_list[i].numel();
    paddle::memory::Copy(weight_whole->place(),
                         weight_data + weight_offset,
                         tensor_list[i].place(),
                         in_data,
                         in_size * sizeof(T),
                         stream);
    weight_offset += in_size;
  }
}

template <typename T>
void WeightToPermutedTensor(const Place &place,
                            gpuStream_t stream,
                            std::vector<const DenseTensor *> *weight_list,
                            DenseTensor *weight_whole,
                            const gpuRNNMode_t rnn_mode,
                            const bool is_bidirec) {
  if (is_bidirec) {
    for (size_t i = 0; i < weight_list->size(); i += 4) {
      auto tmp = (*weight_list)[i + 1];
      (*weight_list)[i + 1] = (*weight_list)[i + 2];
      (*weight_list)[i + 2] = tmp;
    }
  }
  size_t weight_offset = 0;
  for (size_t i = 0; i < weight_list->size(); ++i) {
    if (rnn_mode == miopenLSTM) {
      std::vector<DenseTensor> split_tensor = (*weight_list)[i]->Chunk(4, 0);
      WeightListToTensor<T>(
          place,
          stream,
          {split_tensor[0], split_tensor[1], split_tensor[3], split_tensor[2]},
          weight_whole,
          weight_offset);
    } else if (rnn_mode == miopenGRU) {
      std::vector<DenseTensor> split_tensor = (*weight_list)[i]->Chunk(3, 0);
      WeightListToTensor<T>(place,
                            stream,
                            {split_tensor[1], split_tensor[0], split_tensor[2]},
                            weight_whole,
                            weight_offset);
    } else {
      WeightListToTensor<T>(
          place, stream, {*(*weight_list)[i]}, weight_whole, weight_offset);
    }
    weight_offset += (*weight_list)[i]->numel();
  }
}

#endif

}  // namespace phi