math_function.cu 14.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <algorithm>
#include <vector>
16

17 18
#include "paddle/fluid/memory/malloc.h"
#include "paddle/fluid/memory/memcpy.h"
19
#include "paddle/phi/backends/gpu/gpu_context.h"
20
#include "paddle/phi/common/bfloat16.h"
21
#include "paddle/phi/common/data_type.h"
22
#include "paddle/phi/common/float16.h"
23 24 25
#include "paddle/phi/kernels/funcs/blas/blas.h"
#include "paddle/phi/kernels/funcs/math_function.h"
#include "paddle/phi/kernels/funcs/math_function_impl.h"
26

27
namespace phi {
28 29
namespace funcs {

30 31
using float16 = phi::dtype::float16;
using bfloat16 = phi::dtype::bfloat16;
32

33 34 35 36 37 38 39 40 41 42 43
template struct SetConstant<phi::GPUContext, phi::dtype::float16>;
template struct SetConstant<phi::GPUContext, phi::dtype::bfloat16>;
template struct SetConstant<phi::GPUContext, float>;
template struct SetConstant<phi::GPUContext, double>;
template struct SetConstant<phi::GPUContext, uint8_t>;
template struct SetConstant<phi::GPUContext, int>;
template struct SetConstant<phi::GPUContext, int16_t>;
template struct SetConstant<phi::GPUContext, int64_t>;
template struct SetConstant<phi::GPUContext, bool>;
template struct SetConstant<phi::GPUContext, phi::dtype::complex<float>>;
template struct SetConstant<phi::GPUContext, phi::dtype::complex<double>>;
44 45

template struct SetConstant<paddle::platform::CUDAPinnedDeviceContext,
46
                            phi::dtype::float16>;
47
template struct SetConstant<paddle::platform::CUDAPinnedDeviceContext,
48
                            phi::dtype::bfloat16>;
49 50 51 52 53 54 55 56
template struct SetConstant<paddle::platform::CUDAPinnedDeviceContext, float>;
template struct SetConstant<paddle::platform::CUDAPinnedDeviceContext, double>;
template struct SetConstant<paddle::platform::CUDAPinnedDeviceContext, uint8_t>;
template struct SetConstant<paddle::platform::CUDAPinnedDeviceContext, int>;
template struct SetConstant<paddle::platform::CUDAPinnedDeviceContext, int16_t>;
template struct SetConstant<paddle::platform::CUDAPinnedDeviceContext, int64_t>;
template struct SetConstant<paddle::platform::CUDAPinnedDeviceContext, bool>;
template struct SetConstant<paddle::platform::CUDAPinnedDeviceContext,
57
                            phi::dtype::complex<float>>;
58
template struct SetConstant<paddle::platform::CUDAPinnedDeviceContext,
59
                            phi::dtype::complex<double>>;
60

61 62 63 64 65 66 67 68 69 70 71 72 73 74
#define DEFINE_GPU_TRANS(RANK)                                     \
  template struct Transpose<phi::GPUContext, bool, RANK>;          \
  template struct Transpose<phi::GPUContext, unsigned char, RANK>; \
  template struct Transpose<phi::GPUContext, float, RANK>;         \
  template struct Transpose<phi::GPUContext, double, RANK>;        \
  template struct Transpose<phi::GPUContext, float16, RANK>;       \
  template struct Transpose<phi::GPUContext, bfloat16, RANK>;      \
  template struct Transpose<phi::GPUContext, int8_t, RANK>;        \
  template struct Transpose<phi::GPUContext, int16_t, RANK>;       \
  template struct Transpose<phi::GPUContext, int32_t, RANK>;       \
  template struct Transpose<phi::GPUContext, int64_t, RANK>;       \
  template struct Transpose<phi::GPUContext,                       \
                            phi::dtype::complex<float>,            \
                            RANK>;                                 \
75
  template struct Transpose<phi::GPUContext, phi::dtype::complex<double>, RANK>;
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106

DEFINE_GPU_TRANS(1);
DEFINE_GPU_TRANS(2);
DEFINE_GPU_TRANS(3);
DEFINE_GPU_TRANS(4);
DEFINE_GPU_TRANS(5);
DEFINE_GPU_TRANS(6);

#define REINTERPRET(T, DST_PTR, SRC_PTR) \
  T* DST_PTR = reinterpret_cast<T*>(SRC_PTR)

template <typename T>
__global__ void TransposeNormalKernel(const T* in_ptr,
                                      T* out_ptr,
                                      int64_t element,
                                      const int64_t* in_stride_ptr,
                                      const int64_t* out_stride_ptr,
                                      const int64_t* axis_ptr,
                                      int rank) {
  CUDA_KERNEL_LOOP(out_idx, element) {
    int64_t in_idx = 0;
    int64_t tmp_idx = out_idx;
    for (int i = 0; i < rank; ++i) {
      const int64_t coordinate = tmp_idx / out_stride_ptr[i];
      tmp_idx -= coordinate * out_stride_ptr[i];
      in_idx += coordinate * in_stride_ptr[axis_ptr[i]];
    }
    out_ptr[out_idx] = in_ptr[in_idx];
  }
}

107 108 109
template <typename DeviceContext, typename T>
void TransposeNormal<DeviceContext, T>::operator()(
    const DeviceContext& context,
110 111
    const phi::DenseTensor& in,
    phi::DenseTensor* out,
112 113
    const std::vector<int>& axis) {
  const int rank = axis.size();
114 115
  auto in_stride = phi::stride(in.dims());
  auto out_stride = phi::stride(out->dims());
116 117
  auto* in_ptr = in.data<T>();
  auto* out_ptr = out->data<T>();
118

119 120 121 122 123 124 125 126 127 128 129 130
  // copy in_stride, out_stride, axis to gpu device
  const paddle::platform::CUDAPlace& cuda_place = context.GetPlace();
  paddle::platform::CPUPlace cpu_place = paddle::platform::CPUPlace();
  size_t size = 3 * rank * sizeof(int64_t);
  auto cpu_buf_holder = paddle::memory::Alloc(cpu_place, size);
  auto cuda_buf_holder = paddle::memory::Alloc(cuda_place, size);
  REINTERPRET(int64_t, cpu_buf, cpu_buf_holder->ptr());
  REINTERPRET(int64_t, cuda_buf, cuda_buf_holder->ptr());
  for (int i = 0; i < rank; ++i) {
    cpu_buf[i] = in_stride[i];
    cpu_buf[rank + i] = out_stride[i];
    cpu_buf[2 * rank + i] = axis[i];
131
  }
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
  paddle::memory::Copy(
      cuda_place, cuda_buf, cpu_place, cpu_buf, size, context.stream());
  REINTERPRET(const int64_t, in_stride_ptr, cuda_buf);
  REINTERPRET(const int64_t, out_stride_ptr, cuda_buf + rank);
  REINTERPRET(const int64_t, axis_ptr, cuda_buf + 2 * rank);

  const int MAX_BLOCK_DIM = context.GetMaxThreadsPerBlock();
  const int MAX_GRID_DIM = context.GetMaxPhysicalThreadCount() / MAX_BLOCK_DIM;
  int64_t elements = in.numel();
  int block_size = (elements >= MAX_BLOCK_DIM)
                       ? MAX_BLOCK_DIM
                       : (1 << static_cast<int>(std::log2(elements)));
  int grid_size = elements / block_size;
  grid_size = (grid_size >= MAX_GRID_DIM) ? MAX_GRID_DIM : grid_size;
  TransposeNormalKernel<T><<<grid_size, block_size, 0, context.stream()>>>(
      in_ptr, out_ptr, elements, in_stride_ptr, out_stride_ptr, axis_ptr, rank);
}
149

H
hong 已提交
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
template <typename T>
struct TransposeNormal<phi::GPUContext, T> {
  void operator()(const phi::GPUContext& context,
                  const DenseTensor& in,
                  DenseTensor* out,
                  const std::vector<int>& axis) {
    const int rank = axis.size();
    auto in_stride = stride(in.dims());
    auto out_stride = stride(out->dims());
    auto* in_ptr = in.data<T>();
    auto* out_ptr = out->data<T>();

    // copy in_stride, out_stride, axis to gpu device
    const phi::GPUPlace& cuda_place = context.GetPlace();
    phi::CPUPlace cpu_place = paddle::platform::CPUPlace();
    size_t size = 3 * rank * sizeof(int64_t);
    auto cpu_buf_holder = paddle::memory::Alloc(cpu_place, size);
    auto cuda_buf_holder = paddle::memory::Alloc(cuda_place, size);
    REINTERPRET(int64_t, cpu_buf, cpu_buf_holder->ptr());
    REINTERPRET(int64_t, cuda_buf, cuda_buf_holder->ptr());
    for (int i = 0; i < rank; ++i) {
      cpu_buf[i] = in_stride[i];
      cpu_buf[rank + i] = out_stride[i];
      cpu_buf[2 * rank + i] = axis[i];
    }
    paddle::memory::Copy(
        cuda_place, cuda_buf, cpu_place, cpu_buf, size, context.stream());
    REINTERPRET(const int64_t, in_stride_ptr, cuda_buf);
    REINTERPRET(const int64_t, out_stride_ptr, cuda_buf + rank);
    REINTERPRET(const int64_t, axis_ptr, cuda_buf + 2 * rank);

    const int MAX_BLOCK_DIM = context.GetMaxThreadsPerBlock();
    const int MAX_GRID_DIM =
        context.GetMaxPhysicalThreadCount() / MAX_BLOCK_DIM;
    int64_t elements = in.numel();
    int block_size = (elements >= MAX_BLOCK_DIM)
                         ? MAX_BLOCK_DIM
                         : (1 << static_cast<int>(std::log2(elements)));
    int grid_size = elements / block_size;
    grid_size = (grid_size >= MAX_GRID_DIM) ? MAX_GRID_DIM : grid_size;
190 191 192 193 194 195 196 197
    TransposeNormalKernel<T>
        <<<grid_size, block_size, 0, context.stream()>>>(in_ptr,
                                                         out_ptr,
                                                         elements,
                                                         in_stride_ptr,
                                                         out_stride_ptr,
                                                         axis_ptr,
                                                         rank);
H
hong 已提交
198 199 200
  }
};

201
// define transpose normal
202
#define DEFINE_GPU_TRANS_NORMAL(TYPE) \
203
  template struct TransposeNormal<phi::GPUContext, TYPE>
204 205 206 207 208 209 210 211 212 213 214

DEFINE_GPU_TRANS_NORMAL(float16);
DEFINE_GPU_TRANS_NORMAL(bfloat16);
DEFINE_GPU_TRANS_NORMAL(float);
DEFINE_GPU_TRANS_NORMAL(double);
DEFINE_GPU_TRANS_NORMAL(int);
DEFINE_GPU_TRANS_NORMAL(int64_t);
DEFINE_GPU_TRANS_NORMAL(bool);
DEFINE_GPU_TRANS_NORMAL(int16_t);
DEFINE_GPU_TRANS_NORMAL(uint8_t);
DEFINE_GPU_TRANS_NORMAL(int8_t);
215 216
DEFINE_GPU_TRANS_NORMAL(phi::dtype::complex<float>);
DEFINE_GPU_TRANS_NORMAL(phi::dtype::complex<double>);
217 218 219

struct TensorSetConstantGPU {
  TensorSetConstantGPU(const paddle::platform::DeviceContext& context,
220
                       phi::DenseTensor* tensor,
221 222 223 224 225
                       float value)
      : context_(context), tensor_(tensor), value_(value) {}

  template <typename T>
  void apply() const {
L
Leo Chen 已提交
226 227 228 229
    SetConstant<phi::GPUContext, T> functor;
    functor(reinterpret_cast<const phi::GPUContext&>(context_),
            tensor_,
            static_cast<T>(value_));
230 231 232
  }

  const paddle::platform::DeviceContext& context_;
233
  phi::DenseTensor* tensor_;
234 235 236 237 238 239
  float value_;
};

template <>
void set_constant_with_place<paddle::platform::CUDAPlace>(
    const paddle::platform::DeviceContext& context,
240
    phi::DenseTensor* tensor,
241
    float value) {
242 243
  phi::VisitDataType(tensor->dtype(),
                     TensorSetConstantGPU(context, tensor, value));
244 245 246 247 248 249 250 251 252 253 254 255 256 257
}

template <typename T>
__global__ void RowwiseAddKernel(
    const T* a, const T* b, T* c, int width, int num) {
  T tmp = 1.0 / width;
  CUDA_KERNEL_LOOP(i, num) {
    int h = i * tmp;
    int w = i - h * width;
    c[i] = a[i] + b[w];
  }
}

template <typename T>
L
Leo Chen 已提交
258 259
struct RowwiseAdd<phi::GPUContext, T> {
  void operator()(const phi::GPUContext& context,
260 261 262
                  const phi::DenseTensor& input,
                  const phi::DenseTensor& vector,
                  phi::DenseTensor* output) {
263 264 265 266 267 268
    auto in_dims = input.dims();
    auto out_dims = output->dims();
    auto size = input.numel() / in_dims[0];
    PADDLE_ENFORCE_EQ(
        vector.numel(),
        size,
269
        phi::errors::InvalidArgument(
270 271 272 273 274 275 276 277 278 279
            "The input vector size"
            " should be equal to the size of each row of input tensor."
            " Expected vector size=%d, but received %d",
            size,
            vector.numel()));
    const char* in_dims_cstr = in_dims.to_str().c_str();
    const char* out_dims_cstr = out_dims.to_str().c_str();
    PADDLE_ENFORCE_EQ(
        out_dims,
        in_dims,
280
        phi::errors::InvalidArgument(
281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
            "The output tensor shape should be same as the input tensor"
            " shape. Expected output tensor shape: %s,"
            " but received %s",
            in_dims_cstr,
            out_dims_cstr));
    int blocks = 512;
    int grids = (input.numel() + blocks - 1) / blocks;
    RowwiseAddKernel<T><<<grids, blocks, 0, context.stream()>>>(
        input.data<T>(),
        vector.data<T>(),
        output->data<T>(),
        static_cast<int>(in_dims[1]),
        static_cast<int>(input.numel()));
  }
};

L
Leo Chen 已提交
297 298 299 300 301 302 303
template struct RowwiseAdd<phi::GPUContext, float>;
template struct RowwiseAdd<phi::GPUContext, double>;
template struct ColwiseSum<phi::GPUContext, float>;
template struct ColwiseSum<phi::GPUContext, int>;
template struct ColwiseSum<phi::GPUContext, int64_t>;
// template struct ColwiseSum<phi::GPUContext, double>;
// The ColwiseSum<phi::GPUContext, double> failed in debug
304 305 306
// mode,
// and only failed for this case. So reimplemented it.
template <>
L
Leo Chen 已提交
307 308
void ColwiseSum<phi::GPUContext, double>::operator()(
    const phi::GPUContext& context,
309 310
    const phi::DenseTensor& input,
    phi::DenseTensor* vector) {
311 312 313 314
  auto in_dims = input.dims();
  auto size = input.numel() / in_dims[0];
  PADDLE_ENFORCE_EQ(vector->numel(),
                    size,
315
                    phi::errors::InvalidArgument(
316 317 318 319 320
                        "The size of input vector"
                        " should be equal to the size of input tensor column"
                        " dimension. Expected vector size=%d, but received %d",
                        size,
                        vector->numel()));
321
  phi::DenseTensor one;
322 323 324
  one.Resize({in_dims[0]});
  context.template Alloc<double>(&one);

L
Leo Chen 已提交
325
  SetConstant<phi::GPUContext, double> set;
326
  set(context, &one, static_cast<double>(1.0));
L
Leo Chen 已提交
327 328 329 330 331 332 333 334 335
  phi::funcs::GetBlas<phi::GPUContext, double>(context).GEMV(
      true,
      static_cast<int>(in_dims[0]),
      static_cast<int>(in_dims[1]),
      1.0,
      input.data<double>(),
      one.data<double>(),
      0.0,
      vector->data<double>());
336 337
}

L
Leo Chen 已提交
338 339
template struct RowwiseSum<phi::GPUContext, float>;
// template struct RowwiseSum<phi::GPUContext, double>;
340
// TODO(zcd): Following ColwiseSum format, need to confirm.
L
Leo Chen 已提交
341
// The RowwiseSum<phi::GPUContext, double> failed in debug
342 343 344
// mode,
// and only failed for this case. So reimplemented it.
template <>
L
Leo Chen 已提交
345 346
void RowwiseSum<phi::GPUContext, double>::operator()(
    const phi::GPUContext& context,
347 348
    const phi::DenseTensor& input,
    phi::DenseTensor* vector) {
349 350 351 352
  auto in_dims = input.dims();
  auto size = input.numel() / in_dims[0];
  PADDLE_ENFORCE_EQ(vector->numel(),
                    in_dims[0],
353
                    phi::errors::InvalidArgument(
354 355 356 357 358
                        "The size of input vector"
                        " should be equal to the size of input tensor row"
                        " dimension. Expected vector size=%d, but received %d",
                        in_dims[0],
                        vector->numel()));
359
  phi::DenseTensor one;
360 361 362
  one.Resize({size});
  context.template Alloc<double>(&one);

L
Leo Chen 已提交
363
  SetConstant<phi::GPUContext, double> set;
364
  set(context, &one, static_cast<double>(1.0));
L
Leo Chen 已提交
365 366 367 368 369 370 371 372 373
  phi::funcs::GetBlas<phi::GPUContext, double>(context).GEMV(
      true,
      static_cast<int>(in_dims[1]),
      static_cast<int>(in_dims[0]),
      1.0,
      one.data<double>(),
      input.data<double>(),
      0.0,
      vector->data<double>());
374 375
}

L
Leo Chen 已提交
376 377
template struct RowwiseMean<phi::GPUContext, float>;
template struct RowwiseMean<phi::GPUContext, double>;
378 379

}  // namespace funcs
380
}  // namespace phi