elementwise_sub_op.cu 5.3 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
G
gongweibao 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
G
gongweibao 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
G
gongweibao 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14
#include "paddle/fluid/operators/elementwise/elementwise_op_broadcast.cu.h"
W
Wu Yi 已提交
15
#include "paddle/fluid/operators/elementwise/elementwise_sub_op.h"
16
#include "paddle/fluid/platform/complex.h"
17
#include "paddle/fluid/platform/float16.h"
G
gongweibao 已提交
18 19

namespace ops = paddle::operators;
20 21 22 23 24
namespace plat = paddle::platform;

namespace paddle {
namespace operators {

25 26 27 28 29 30 31
template <typename T>
struct CudaSubFunctor {
  inline HOSTDEVICE T operator()(const T* args) const {
    return args[0] - args[1];
  }
};

32 33 34 35 36 37 38 39 40 41 42 43
template <typename T>
class ElementwiseSubKernel<platform::CUDADeviceContext, T>
    : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    std::vector<const framework::Tensor*> ins;
    std::vector<framework::Tensor*> outs;
    const auto& cuda_ctx =
        ctx.template device_context<platform::CUDADeviceContext>();

    int axis = PackTensorsIntoVector<T>(ctx, &ins, &outs);
    LaunchElementwiseCudaKernel<ElementwiseType::kBinary, T, T>(
44
        cuda_ctx, ins, &outs, axis, CudaSubFunctor<T>());
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
  }
};

template <typename T>
static __global__ void SimpleElemwiseSubGradCUDAKernel(const T* dout,
                                                       int64_t size, T* dx,
                                                       T* dy) {
  int col = blockIdx.x * blockDim.x + threadIdx.x;

  while (col < size) {
    dx[col] = dout[col];
    dy[col] = -dout[col];
    col += blockDim.x * gridDim.x;
  }
}

template <typename DeviceContext, typename T>
typename std::enable_if<
    std::is_same<DeviceContext, plat::CUDADeviceContext>::value>::type
elementwise_sub_grad(const framework::ExecutionContext& ctx,
                     const framework::Tensor* x, const framework::Tensor* y,
                     const framework::Tensor* out,
                     const framework::Tensor* dout, framework::Tensor* dx,
                     framework::Tensor* dy) {
  dim3 block_size = dim3(PADDLE_CUDA_THREAD_SIZE, 1);
  auto size = x->numel();
71
  dim3 grid_size =
72 73
      dim3((size + PADDLE_CUDA_THREAD_SIZE - 1) / PADDLE_CUDA_THREAD_SIZE, 1);
  SimpleElemwiseSubGradCUDAKernel<
74
      T><<<grid_size, block_size, 0,
75 76 77 78 79 80 81
           ctx.template device_context<plat::CUDADeviceContext>().stream()>>>(
      dout->data<T>(), size, dx->mutable_data<T>(ctx.GetPlace()),
      dy->mutable_data<T>(ctx.GetPlace()));
}

}  // namespace operators
}  // namespace paddle
G
gongweibao 已提交
82

Q
QI JUN 已提交
83
REGISTER_OP_CUDA_KERNEL(
G
gongweibao 已提交
84
    elementwise_sub,
Q
QI JUN 已提交
85
    ops::ElementwiseSubKernel<paddle::platform::CUDADeviceContext, float>,
86 87
    ops::ElementwiseSubKernel<paddle::platform::CUDADeviceContext,
                              paddle::platform::float16>,
Q
QI JUN 已提交
88 89
    ops::ElementwiseSubKernel<paddle::platform::CUDADeviceContext, double>,
    ops::ElementwiseSubKernel<paddle::platform::CUDADeviceContext, int>,
90 91
    ops::ElementwiseSubKernel<paddle::platform::CUDADeviceContext, int64_t>,
    ops::ElementwiseSubKernel<paddle::platform::CUDADeviceContext,
92
                              paddle::platform::complex<float>>,
93
    ops::ElementwiseSubKernel<paddle::platform::CUDADeviceContext,
94
                              paddle::platform::complex<double>>);
Q
QI JUN 已提交
95
REGISTER_OP_CUDA_KERNEL(
G
gongweibao 已提交
96
    elementwise_sub_grad,
Q
QI JUN 已提交
97
    ops::ElementwiseSubGradKernel<paddle::platform::CUDADeviceContext, float>,
98 99
    ops::ElementwiseSubGradKernel<paddle::platform::CUDADeviceContext,
                                  paddle::platform::float16>,
Q
QI JUN 已提交
100 101
    ops::ElementwiseSubGradKernel<paddle::platform::CUDADeviceContext, double>,
    ops::ElementwiseSubGradKernel<paddle::platform::CUDADeviceContext, int>,
102 103
    ops::ElementwiseSubGradKernel<paddle::platform::CUDADeviceContext, int64_t>,
    ops::ElementwiseSubGradKernel<paddle::platform::CUDADeviceContext,
104
                                  paddle::platform::complex<float>>,
Q
QI JUN 已提交
105
    ops::ElementwiseSubGradKernel<paddle::platform::CUDADeviceContext,
106
                                  paddle::platform::complex<double>>);
107 108 109 110 111 112 113 114 115
REGISTER_OP_CUDA_KERNEL(
    elementwise_sub_grad_grad,
    ops::ElementwiseSubDoubleGradKernel<paddle::platform::CUDADeviceContext,
                                        float>,
    ops::ElementwiseSubDoubleGradKernel<paddle::platform::CUDADeviceContext,
                                        double>,
    ops::ElementwiseSubDoubleGradKernel<paddle::platform::CUDADeviceContext,
                                        int>,
    ops::ElementwiseSubDoubleGradKernel<paddle::platform::CUDADeviceContext,
116 117
                                        int64_t>,
    ops::ElementwiseSubDoubleGradKernel<paddle::platform::CUDADeviceContext,
118
                                        paddle::platform::complex<float>>,
119
    ops::ElementwiseSubDoubleGradKernel<paddle::platform::CUDADeviceContext,
120
                                        paddle::platform::complex<double>>);