mul_compute.h 4.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once

#include "paddle/fluid/lite/core/kernel.h"
#include "paddle/fluid/lite/core/op_registry.h"
#include "paddle/fluid/lite/core/types.h"
#include "paddle/fluid/operators/math/blas.h"

namespace paddle {
namespace lite {
namespace kernels {
namespace x86 {

using Tensor = framework::Tensor;

template <typename T>
class MulCompute : public KernelLite<TARGET(kX86), PRECISION(kFloat)> {
 public:
  using param_t = operators::MulParam;

  void Run() override {
    auto& context = ctx_->As<X86Context>();
    auto& param = *param_.get_mutable<operators::MulParam>();
    CHECK(context.x86_device_context());

    param.output->template mutable_data<T>();

    auto* x = &param.x->raw_tensor();
    auto* y = &param.y->raw_tensor();

C
Chunwei 已提交
43 44 45 46 47 48 49 50 51 52 53 54 55 56
    Tensor x_matrix, y_matrix;

    if (x->dims().size() > 2) {
      x_matrix = framework::ReshapeToMatrix(*x, param.x_num_col_dims);
    } else {
      x_matrix = *x;
    }

    if (y->dims().size() > 2) {
      y_matrix = framework::ReshapeToMatrix(*y, param.y_num_col_dims);

    } else {
      y_matrix = *y;
    }
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85

    auto* z = &param.output->raw_tensor();
    auto z_dim = z->dims();
    if (z_dim.size() != 2) {
      z->Resize({x_matrix.dims()[0], y_matrix.dims()[1]});
    }

    auto blas = paddle::operators::math::GetBlas<platform::CPUDeviceContext, T>(
        *context.x86_device_context());

    blas.MatMul(x_matrix, y_matrix, z);
    if (z_dim.size() != 2) {
      z->Resize(z_dim);
    }
  }

  virtual ~MulCompute() = default;
};

template <typename T>
class MulGradCompute : public KernelLite<TARGET(kX86), PRECISION(kFloat)> {
 public:
  void Run() override {
    auto& context = ctx_->As<X86Context>();
    auto& param = *param_.get_mutable<operators::MulGradParam>();
    CHECK(context.x86_device_context());

    auto* x = &param.x->raw_tensor();
    auto* y = &param.y->raw_tensor();
C
Chunwei 已提交
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101

    Tensor x_matrix, y_matrix;

    if (x->dims().size() > 2) {
      x_matrix = framework::ReshapeToMatrix(*x, param.x_num_col_dims);
    } else {
      x_matrix = *x;
    }

    if (y->dims().size() > 2) {
      y_matrix = framework::ReshapeToMatrix(*y, param.y_num_col_dims);

    } else {
      y_matrix = *y;
    }

102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
    auto* dout = &param.output_grad->raw_tensor();

    Tensor dout_mat;
    dout_mat.ShareDataWith(*dout);
    dout_mat.Resize(
        {framework::flatten_to_2d(x->dims(), param.x_num_col_dims)[0],
         framework::flatten_to_2d(y->dims(), param.y_num_col_dims)[1]});

    auto* dx = &param.x_grad->raw_tensor();
    auto* dy = &param.y_grad->raw_tensor();

    if (dx != nullptr) {
      dx->set_lod(x->lod());
    }
    if (dy != nullptr) {
      dy->set_lod(y->lod());
    }

    auto blas = paddle::operators::math::GetBlas<platform::CPUDeviceContext, T>(
        *context.x86_device_context());
    if (dx) {
      // dx->mutable_data<T>(context.x86_device_context->GetPlace());
      param.x_grad->template mutable_data<T>();
      Tensor dx_matrix = dx->dims().size() > 2 ? framework::ReshapeToMatrix(
                                                     *dx, param.x_num_col_dims)
                                               : *dx;

      // dx = dout * y'. dx: M x K, dout : M x N, y : K x N
      blas.MatMul(dout_mat, false, y_matrix, true, &dx_matrix);
    }
    if (dy) {
      // dy->yutable_data<T>(context.x86_device_context->GetPlace());
      param.y_grad->template mutable_data<T>();
      Tensor dy_matrix = dy->dims().size() > 2 ? framework::ReshapeToMatrix(
                                                     *dy, param.y_num_col_dims)
                                               : *dy;
      // dy = x' * dout. dy K x N, dout : M x N, x : M x K
      blas.MatMul(x_matrix, true, dout_mat, false, &dy_matrix);
    }
  }

  virtual ~MulGradCompute() = default;
};

}  // namespace x86
}  // namespace kernels
}  // namespace lite
}  // namespace paddle