cxx_api_test.cc 4.2 KB
Newer Older
S
superjomn 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/lite/api/cxx_api.h"
16
#include <gflags/gflags.h>
S
superjomn 已提交
17
#include <gtest/gtest.h>
S
superjomn 已提交
18
#include <vector>
C
Chunwei 已提交
19 20 21
#include "paddle/fluid/lite/api/lite_api_test_helper.h"
#include "paddle/fluid/lite/core/compatible_tensor.h"
#include "paddle/fluid/lite/core/mir/use_passes.h"
S
superjomn 已提交
22
#include "paddle/fluid/lite/core/op_registry.h"
C
Chunwei 已提交
23 24
#include "paddle/fluid/lite/kernels/use_kernels.h"
#include "paddle/fluid/lite/operators/use_ops.h"
25

Y
Yan Chunwei 已提交
26 27 28 29
// For training.
DEFINE_string(startup_program_path, "", "");
DEFINE_string(main_program_path, "", "");

S
sangoly 已提交
30 31 32
// for eval
DEFINE_string(eval_model_dir, "", "");

S
superjomn 已提交
33 34 35
namespace paddle {
namespace lite {

S
sangoly 已提交
36
#ifndef LITE_WITH_LIGHT_WEIGHT_FRAMEWORK
S
superjomn 已提交
37
TEST(CXXApi, test) {
C
Chunwei 已提交
38
  const lite::Tensor* out = RunHvyModel();
39
  LOG(INFO) << out << " memory size " << out->data_size();
C
Chunwei 已提交
40 41 42
  for (int i = 0; i < 10; i++) {
    LOG(INFO) << "out " << out->data<float>()[i];
  }
43
  LOG(INFO) << "dims " << out->dims();
S
superjomn 已提交
44
  // LOG(INFO) << "out " << *out;
S
superjomn 已提交
45 46
}

S
Superjomn 已提交
47
TEST(CXXApi, save_model) {
Y
Yan Chunwei 已提交
48
  lite::ExecutorLite predictor;
49 50
  std::vector<Place> valid_places({Place{TARGET(kHost), PRECISION(kFloat)},
                                   Place{TARGET(kX86), PRECISION(kFloat)}});
51 52
  predictor.Build(FLAGS_model_dir, Place{TARGET(kCUDA), PRECISION(kFloat)},
                  valid_places);
S
Superjomn 已提交
53

54
  LOG(INFO) << "Save optimized model to " << FLAGS_optimized_model;
S
superjomn 已提交
55
  predictor.SaveModel(FLAGS_optimized_model);
S
Superjomn 已提交
56
}
Y
Yan Chunwei 已提交
57

58
/*TEST(CXXTrainer, train) {
Y
Yan Chunwei 已提交
59 60 61 62 63 64 65 66 67 68 69 70 71
  Place prefer_place({TARGET(kHost), PRECISION(kFloat), DATALAYOUT(kNCHW)});
  std::vector<Place> valid_places({prefer_place});
  auto scope = std::make_shared<lite::Scope>();

  CXXTrainer trainer(scope, prefer_place, valid_places);

  std::string main_program_pb, startup_program_pb;
  ReadBinaryFile(FLAGS_main_program_path, &main_program_pb);
  ReadBinaryFile(FLAGS_startup_program_path, &startup_program_pb);
  framework::proto::ProgramDesc main_program_desc, startup_program_desc;
  main_program_desc.ParseFromString(main_program_pb);
  startup_program_desc.ParseFromString(startup_program_pb);

L
liuwei1031 已提交
72
  // LOG(INFO) << main_program_desc.DebugString();
Y
Yan Chunwei 已提交
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87

  for (const auto& op : main_program_desc.blocks(0).ops()) {
    LOG(INFO) << "get op " << op.type();
  }

  return;

  trainer.RunStartupProgram(startup_program_desc);
  auto& exe = trainer.BuildMainProgramExecutor(main_program_desc);
  auto* tensor0 = exe.GetInput(0);
  tensor0->Resize(std::vector<int64_t>({100, 100}));
  auto* data0 = tensor0->mutable_data<float>();
  data0[0] = 0;

  exe.Run();
88
}*/
Y
Yan Chunwei 已提交
89
#endif  // LITE_WITH_LIGHT_WEIGHT_FRAMEWORK
S
Superjomn 已提交
90

S
sangoly 已提交
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
#ifdef LITE_WITH_ARM
TEST(CXXApi, eval) {
  DeviceInfo::Init();
  lite::ExecutorLite predictor;
  std::vector<Place> valid_places({Place{TARGET(kHost), PRECISION(kFloat)},
                                   Place{TARGET(kARM), PRECISION(kFloat)}});

  predictor.Build(FLAGS_eval_model_dir, Place{TARGET(kARM), PRECISION(kFloat)},
                  valid_places);

  auto* input_tensor = predictor.GetInput(0);
  input_tensor->Resize(DDim(std::vector<DDim::value_type>({1, 3, 224, 224})));
  auto* data = input_tensor->mutable_data<float>();
  for (int i = 0; i < input_tensor->dims().production(); i++) {
    data[i] = 1;
  }

  predictor.Run();

  auto* out = predictor.GetOutput(0);
  std::vector<float> results({0.00097802, 0.00099822, 0.00103093, 0.00100121,
                              0.00098268, 0.00104065, 0.00099962, 0.00095181,
                              0.00099694, 0.00099406});
  for (int i = 0; i < results.size(); ++i) {
    EXPECT_NEAR(out->data<float>()[i], results[i], 1e-5);
  }
  ASSERT_EQ(out->dims().size(), 2);
  ASSERT_EQ(out->dims()[0], 1);
  ASSERT_EQ(out->dims()[1], 1000);
}
#endif

S
superjomn 已提交
123 124
}  // namespace lite
}  // namespace paddle