test_fuse_optimizer_pass.py 4.9 KB
Newer Older
C
chengduo 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from parallel_executor_test_base import TestParallelExecutorBase
import paddle.fluid as fluid
import paddle.fluid.core as core
import numpy as np
import paddle
import paddle.dataset.mnist as mnist
import unittest
import os


def simple_fc_net(use_feed):
    img = fluid.layers.data(name='image', shape=[784], dtype='float32')
    label = fluid.layers.data(name='label', shape=[1], dtype='int64')

    hidden = img
    for _ in range(4):
        hidden = fluid.layers.fc(
            hidden,
            size=200,
            act='relu',
            bias_attr=fluid.ParamAttr(
                initializer=fluid.initializer.Constant(value=1.0)))
    prediction = fluid.layers.fc(hidden, size=10, act='softmax')
    loss = fluid.layers.cross_entropy(input=prediction, label=label)
    loss = fluid.layers.mean(loss)
    return loss


def fc_with_batchnorm(use_feed):
    img = fluid.layers.data(name='image', shape=[784], dtype='float32')
    label = fluid.layers.data(name='label', shape=[1], dtype='int64')

    hidden = img
    for _ in range(2):
        hidden = fluid.layers.fc(
            hidden,
            size=200,
            act='relu',
            bias_attr=fluid.ParamAttr(
                initializer=fluid.initializer.Constant(value=1.0)))

        hidden = fluid.layers.batch_norm(input=hidden)

    prediction = fluid.layers.fc(hidden, size=10, act='softmax')
    loss = fluid.layers.cross_entropy(input=prediction, label=label)
    loss = fluid.layers.mean(loss)
    return loss


class TestFuseAdamOps(TestParallelExecutorBase):
    @classmethod
    def setUpClass(cls):
        os.environ['CPU_NUM'] = str(4)

    def _init_data(self, random=True):
        np.random.seed(5)
        if random:
            img = np.random.random(size=[32, 784]).astype(np.float32)
        else:
            img = np.ones(shape=[32, 784], dtype='float32')
        label = np.ones(shape=[32, 1], dtype='int64')
        return img, label

    def _compare_fused_optimizer_ops(self,
                                     model,
                                     use_cuda,
                                     random_data=True,
                                     optimizer=fluid.optimizer.Adam):
        if use_cuda and not core.is_compiled_with_cuda():
            return
        img, label = self._init_data(random_data)
        not_fuse_op_first_loss, not_fuse_op_last_loss = self.check_network_convergence(
            model,
            feed_dict={"image": img,
                       "label": label},
            use_cuda=use_cuda,
            fuse_all_optimizer_ops=False,
            memory_opt=False,  # avoid the gradient's name changed in Python side.
            optimizer=optimizer)
        fuse_op_first_loss, fuse_op_last_loss = self.check_network_convergence(
            model,
            feed_dict={"image": img,
                       "label": label},
            use_cuda=use_cuda,
            fuse_all_optimizer_ops=True,
            memory_opt=False,  # avoid the gradient's name changed in Python side.
            optimizer=optimizer)

        for loss in zip(not_fuse_op_first_loss, fuse_op_first_loss):
            self.assertAlmostEquals(loss[0], loss[1], delta=1e-6)
        for loss in zip(not_fuse_op_last_loss, fuse_op_last_loss):
            self.assertAlmostEquals(loss[0], loss[1], delta=1e-6)

    def test_simple_fc_with_fuse_op(self):
        self._compare_fused_optimizer_ops(simple_fc_net, True)
        self._compare_fused_optimizer_ops(simple_fc_net, False)

    def test_batchnorm_fc_with_fuse_op(self):
        self._compare_fused_optimizer_ops(fc_with_batchnorm, True)
        # self._compare_fused_optimizer_ops(fc_with_batchnorm, False)


class TestFuseSGDOps(TestFuseAdamOps):
    def sgd_optimizer(self, learning_rate=1e-4):
        return fluid.optimizer.SGD(learning_rate=learning_rate)

    def test_simple_fc_with_fuse_op(self):
        self._compare_fused_optimizer_ops(
            simple_fc_net, True, optimizer=self.sgd_optimizer)
        self._compare_fused_optimizer_ops(
            simple_fc_net, False, optimizer=self.sgd_optimizer)

    def test_batchnorm_fc_with_fuse_op(self):
        self._compare_fused_optimizer_ops(
            fc_with_batchnorm, True, optimizer=self.sgd_optimizer)
        self._compare_fused_optimizer_ops(
            fc_with_batchnorm, False, optimizer=self.sgd_optimizer)


if __name__ == '__main__':
    unittest.main()