lstm_op.cc 13.0 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
D
dangqingqing 已提交
2

D
dangqingqing 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
D
dangqingqing 已提交
6

D
dangqingqing 已提交
7
http://www.apache.org/licenses/LICENSE-2.0
D
dangqingqing 已提交
8

D
dangqingqing 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
D
dangqingqing 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/lstm_op.h"
S
sneaxiy 已提交
16
#include <memory>
17
#include <string>
D
dangqingqing 已提交
18 19 20 21 22 23 24 25

namespace paddle {
namespace operators {

class LSTMOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

26
  void InferShape(framework::InferShapeContext* ctx) const override {
D
dangqingqing 已提交
27 28
    PADDLE_ENFORCE(ctx->HasInput("Input"),
                   "Input(Input) of LSTM should not be null.");
29 30 31 32 33
    PADDLE_ENFORCE(ctx->HasInput("Weight"),
                   "Input(Weight) of LSTM should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("Bias"),
                   "Input(Bias) of LSTM should not be null.");

D
dangqingqing 已提交
34 35
    PADDLE_ENFORCE(ctx->HasOutput("Hidden"),
                   "Output(Hidden) of LSTM should not be null.");
36
    PADDLE_ENFORCE(ctx->HasOutput("Cell"),
D
dangqingqing 已提交
37
                   "Output(Cell) of LSTM should not be null.");
38 39 40 41
    PADDLE_ENFORCE(ctx->HasOutput("BatchGate"),
                   "Output(BatchGate) of LSTM should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("BatchCellPreAct"),
                   "Output(BatchGate) of LSTM should not be null.");
D
dangqingqing 已提交
42

D
dangqingqing 已提交
43 44
    auto in_dims = ctx->GetInputDim("Input");
    PADDLE_ENFORCE_EQ(in_dims.size(), 2, "Input(X)'s rank must be 2.");
D
dangqingqing 已提交
45 46 47 48 49 50 51 52 53 54 55 56

    if (ctx->HasInput("H0")) {
      PADDLE_ENFORCE(ctx->HasInput("C0"),
                     "Input(Cell) and Input(Hidden) of LSTM should not "
                     "be null at the same time.");
      auto h_dims = ctx->GetInputDim("H0");
      auto c_dims = ctx->GetInputDim("C0");
      PADDLE_ENFORCE(h_dims == c_dims,
                     "The dimension of Input(H0) and Input(C0) "
                     "should be the same.");
    }

D
dangqingqing 已提交
57
    int frame_size = in_dims[1] / 4;
D
dangqingqing 已提交
58 59 60 61 62 63 64 65 66 67 68
    auto w_dims = ctx->GetInputDim("Weight");
    PADDLE_ENFORCE_EQ(w_dims.size(), 2,
                      "The rank of Input(Weight) should be 2.");
    PADDLE_ENFORCE_EQ(w_dims[0], frame_size,
                      "The first dimension of Input(Weight) "
                      "should be %d.",
                      frame_size);
    PADDLE_ENFORCE_EQ(w_dims[1], 4 * frame_size,
                      "The second dimension of Input(Weight) "
                      "should be 4 * %d.",
                      frame_size);
69

D
dangqingqing 已提交
70 71 72 73
    auto b_dims = ctx->GetInputDim("Bias");
    PADDLE_ENFORCE_EQ(b_dims.size(), 2, "The rank of Input(Bias) should be 2.");
    PADDLE_ENFORCE_EQ(b_dims[0], 1,
                      "The first dimension of Input(Bias) should be 1.");
74 75

    if (ctx->Attrs().Get<bool>("use_peepholes")) {
D
dangqingqing 已提交
76 77 78 79 80 81 82
      PADDLE_ENFORCE_EQ(b_dims[1], 7 * frame_size,
                        "The second dimension of Input(Bias) should be "
                        "7 * %d if enable peepholes connection",
                        frame_size);
    } else {
      PADDLE_ENFORCE_EQ(b_dims[1], 4 * frame_size,
                        "The second dimension of Input(Bias) should be "
Y
Yu Yang 已提交
83
                        "4 * %d if disable peepholes connection",
D
dangqingqing 已提交
84 85
                        frame_size);
    }
86

D
dangqingqing 已提交
87 88 89 90 91
    framework::DDim out_dims({in_dims[0], frame_size});
    ctx->SetOutputDim("Hidden", out_dims);
    ctx->SetOutputDim("Cell", out_dims);
    ctx->SetOutputDim("BatchGate", in_dims);
    ctx->SetOutputDim("BatchCellPreAct", out_dims);
D
dangqingqing 已提交
92 93 94
    ctx->ShareLoD("Input", "Hidden");
    ctx->ShareLoD("Input", "Cell");
  }
95 96

 protected:
97
  framework::OpKernelType GetExpectedKernelType(
98
      const framework::ExecutionContext& ctx) const override {
Y
Yu Yang 已提交
99
    return framework::OpKernelType(
Y
Yu Yang 已提交
100
        ctx.Input<framework::LoDTensor>("Input")->type(), ctx.device_context());
101
  }
D
dangqingqing 已提交
102 103 104 105
};

class LSTMOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
106
  void Make() override {
D
dangqingqing 已提交
107 108 109
    AddInput("Input",
             "(LoDTensor) the first input is a LodTensor, which support "
             "variable-time length input sequence. The underlying tensor in "
D
dangqingqing 已提交
110
             "this LoDTensor is a matrix with shape (T X 4D), where T is the "
D
dangqingqing 已提交
111 112 113 114
             "total time steps in this mini-batch, D is the hidden size.");
    AddInput("H0",
             "(Tensor, optional) the initial hidden state is an optional "
             "input. This is a tensor with shape (N x D), where N is the "
K
kexinzhao 已提交
115
             "batch size and D is the hidden size.")
116
        .AsDispensable();
D
dangqingqing 已提交
117 118 119
    AddInput("C0",
             "(Tensor, optional) the initial cell state is an optional "
             "input. This is a tensor with shape (N x D), where N is the "
Y
Yibing Liu 已提交
120
             "batch size. `H0` and `C0` can be NULL but only at the same time.")
121
        .AsDispensable();
D
dangqingqing 已提交
122 123
    AddInput("Weight",
             "(Tensor) the learnable hidden-hidden weights."
D
dangqingqing 已提交
124 125
             " - The shape is (D x 4D), where D is the hidden size. "
             " - Weight = {W_ch, W_ih, W_fh, W_oh}");
D
dangqingqing 已提交
126 127 128
    AddInput("Bias",
             "(Tensor) the learnable weights, which contains two parts: "
             "input-hidden bias weight and peephole connections weight if "
129 130
             "setting `use_peepholes` True. "
             "1. `use_peepholes = False` "
D
dangqingqing 已提交
131 132
             " - The shape is (1 x 4D). "
             " - Bias = {b_c, b_i, b_f, b_o}."
133
             "2. `use_peepholes = True` "
D
dangqingqing 已提交
134
             " - The shape is (1 x 7D). "
135
             " - Bias = {b_c, b_i, b_f, b_o, W_ic, W_fc, W_oc}.");
D
dangqingqing 已提交
136
    AddOutput("Hidden",
D
dangqingqing 已提交
137 138
              "(LoDTensor) the hidden state of LSTM operator. "
              "The shape is (T x D), and lod is the same with the `Input`.");
D
dangqingqing 已提交
139
    AddOutput("Cell",
D
dangqingqing 已提交
140 141
              "(LoDTensor) the cell state of LSTM operator. "
              "The shape is (T x D), and lod is the same with the `Input`.");
142 143
    AddOutput("BatchGate",
              "(LoDTensor) This LoDTensor contains input gate, forget gate "
Y
Yu Yang 已提交
144
              "and output gate after the nonlinear computation. This "
K
kexinzhao 已提交
145
              "LoDTensor has the same shape as the reorganized input, which "
D
dangqingqing 已提交
146
              "is also be called batch input. The LoD size is 2. The first "
147 148 149
              "LoD is the batch offsets and the second LoD contains the "
              "indexes, which denote the position of reorganized sequence "
              "in the raw input.")
D
dangqingqing 已提交
150
        .AsIntermediate();
D
dangqingqing 已提交
151
    AddOutput("BatchCellPreAct",
K
kexinzhao 已提交
152
              "(LoDTensor) This LoDTensor is obtained in the forward and used "
D
dangqingqing 已提交
153 154
              "in the backward.")
        .AsIntermediate();
155
    AddAttr<bool>("use_peepholes",
D
dangqingqing 已提交
156 157 158
                  "(bool, defalut: True) "
                  "whether to enable diagonal/peephole connections.")
        .SetDefault(true);
159
    AddAttr<bool>("is_reverse",
D
dangqingqing 已提交
160 161
                  "(bool, defalut: False) "
                  "whether to compute reversed LSTM.")
162
        .SetDefault(false);
D
dangqingqing 已提交
163
    AddAttr<std::string>(
164
        "gate_activation",
Y
Yu Yang 已提交
165
        "(string, default: sigmoid)"
D
dangqingqing 已提交
166
        "The activation for input gate, forget gate and output "
Y
Yu Yang 已提交
167
        "gate, `sigmoid` by default.")
D
dangqingqing 已提交
168 169
        .SetDefault("sigmoid")
        .InEnum({"sigmoid", "tanh", "relu", "identity"});
170
    AddAttr<std::string>("cell_activation",
Y
Yu Yang 已提交
171
                         "(string, default: tanh)"
D
dangqingqing 已提交
172
                         "The activation for cell output, `tanh` by defalut.")
D
dangqingqing 已提交
173 174
        .SetDefault("tanh")
        .InEnum({"sigmoid", "tanh", "relu", "identity"});
175
    AddAttr<std::string>("candidate_activation",
Y
Yu Yang 已提交
176
                         "(string, default: tanh)"
D
dangqingqing 已提交
177
                         "The activation for candidate hidden state, "
Y
Yu Yang 已提交
178
                         "`tanh` by default.")
D
dangqingqing 已提交
179 180
        .SetDefault("tanh")
        .InEnum({"sigmoid", "tanh", "relu", "identity"});
K
kexinzhao 已提交
181 182
    AddComment(R"DOC(
Long-Short Term Memory (LSTM) Operator.
D
dangqingqing 已提交
183

D
dangqingqing 已提交
184
The defalut implementation is diagonal/peephole connection
K
kexinzhao 已提交
185
(https://arxiv.org/pdf/1402.1128.pdf), the formula is as follows:
D
dangqingqing 已提交
186

Y
yuyang18 已提交
187
$$ i_t = \\sigma(W_{ix}x_{t} + W_{ih}h_{t-1} + W_{ic}c_{t-1} + b_i) $$
D
dangqingqing 已提交
188

Y
yuyang18 已提交
189
$$ f_t = \\sigma(W_{fx}x_{t} + W_{fh}h_{t-1} + W_{fc}c_{t-1} + b_f) $$
D
dangqingqing 已提交
190

Y
yuyang18 已提交
191
$$ \\tilde{c_t} = act_g(W_{cx}x_t + W_{ch}h_{t-1} + b_c) $$
D
dangqingqing 已提交
192

Y
yuyang18 已提交
193
$$ o_t = \\sigma(W_{ox}x_{t} + W_{oh}h_{t-1} + W_{oc}c_t + b_o) $$
D
dangqingqing 已提交
194

Y
yuyang18 已提交
195
$$ c_t = f_t \\odot c_{t-1} + i_t \\odot \\tilde{c_t} $$
D
dangqingqing 已提交
196

Y
yuyang18 已提交
197
$$ h_t = o_t \\odot act_h(c_t) $$
D
dangqingqing 已提交
198

Y
yi.wu 已提交
199 200 201 202 203 204 205 206 207 208 209 210 211 212
- W terms denote weight matrices (e.g. $W_{xi}$ is the matrix
  of weights from the input gate to the input), $W_{ic}, W_{fc}, W_{oc}$
  are diagonal weight matrices for peephole connections. In our implementation,
  we use vectors to reprenset these diagonal weight matrices.
- The b terms denote bias vectors ($b_i$ is the input gate bias vector).
- $\sigma$ is the non-line activations, such as logistic sigmoid function.
- $i, f, o$ and $c$ are the input gate, forget gate, output gate,
  and cell activation vectors, respectively, all of which have the same size as
  the cell output activation vector $h$.
- The $\odot$ is the element-wise product of the vectors.
- $act_g$ and $act_h$ are the cell input and cell output activation functions
  and `tanh` is usually used for them.
- $\tilde{c_t}$ is also called candidate hidden state,
  which is computed based on the current input and the previous hidden state.
D
dangqingqing 已提交
213

D
dangqingqing 已提交
214 215 216
Set `use_peepholes` False to disable peephole connection. The formula
is omitted here, please refer to the paper
http://www.bioinf.jku.at/publications/older/2604.pdf for details.
D
dangqingqing 已提交
217

D
dangqingqing 已提交
218 219
Note that these $W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}$
operations on the input $x_{t}$ are NOT included in this operator.
D
dangqingqing 已提交
220
Users can choose to use fully-connect operator before LSTM operator.
D
dangqingqing 已提交
221 222 223 224 225 226 227 228 229

)DOC");
  }
};

class LSTMGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

230
  void InferShape(framework::InferShapeContext* ctx) const override {
231 232 233 234 235 236
    PADDLE_ENFORCE(ctx->HasInput("Input"),
                   "Input(Input) of LSTM should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("Hidden"),
                   "Input(Hidden) of LSTM should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("Cell"),
                   "Input(Cell) of LSTM should not be null.");
237 238 239 240
    PADDLE_ENFORCE(ctx->HasInput("Weight"),
                   "Input(Weight) of LSTM should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("Bias"),
                   "Input(Bias) of LSTM should not be null.");
241 242 243 244 245 246

    PADDLE_ENFORCE(ctx->HasInput("BatchGate"),
                   "Input(BatchGate) of LSTM should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("BatchCellPreAct"),
                   "Input(BatchGate) of LSTM should not be null.");

D
dangqingqing 已提交
247 248 249 250 251 252 253 254 255 256 257
    auto SetOutGradDim = [&ctx](const std::string& name) {
      auto g_name = framework::GradVarName(name);
      if (ctx->HasOutput(g_name))
        ctx->SetOutputDim(g_name, ctx->GetInputDim(name));
    };

    SetOutGradDim("Input");
    SetOutGradDim("Weight");
    SetOutGradDim("Bias");
    SetOutGradDim("H0");
    SetOutGradDim("C0");
D
dangqingqing 已提交
258
  }
259 260

 protected:
261
  framework::OpKernelType GetExpectedKernelType(
262
      const framework::ExecutionContext& ctx) const override {
Y
Yu Yang 已提交
263
    return framework::OpKernelType(
Y
Yu Yang 已提交
264
        ctx.Input<framework::LoDTensor>("Input")->type(), ctx.device_context());
265
  }
D
dangqingqing 已提交
266 267
};

S
sneaxiy 已提交
268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
class LSTMGradOpDescMaker : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

 protected:
  std::unique_ptr<framework::OpDesc> Apply() const override {
    std::unique_ptr<framework::OpDesc> op(new framework::OpDesc());
    op->SetType("lstm_grad");
    op->SetAttrMap(Attrs());
    op->SetInput("Input", Input("Input"));
    op->SetOutput(framework::GradVarName("Input"), InputGrad("Input"));

    if (ForwardOp().Inputs().count("H0") > 0) {
      op->SetInput("H0", Input("H0"));
      op->SetOutput(framework::GradVarName("H0"), InputGrad("H0"));
    }

    if (ForwardOp().Inputs().count("C0") > 0) {
      op->SetInput("C0", Input("C0"));
      op->SetOutput(framework::GradVarName("C0"), InputGrad("C0"));
    }

    op->SetInput("Weight", Input("Weight"));
    op->SetOutput(framework::GradVarName("Weight"), InputGrad("Weight"));

    op->SetInput("Bias", Input("Bias"));
    op->SetOutput(framework::GradVarName("Bias"), InputGrad("Bias"));

    op->SetInput("Cell", Output("Cell"));

    op->SetInput("Hidden", Output("Hidden"));
    op->SetInput(framework::GradVarName("Hidden"), OutputGrad("Hidden"));

    op->SetInput("BatchGate", Output("BatchGate"));
    op->SetInput("BatchCellPreAct", Output("BatchCellPreAct"));
    return op;
  }
};

D
dangqingqing 已提交
307 308 309 310
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
Y
Yang Yang 已提交
311
REGISTER_OPERATOR(lstm, ops::LSTMOp, ops::LSTMOpMaker,
S
sneaxiy 已提交
312
                  ops::LSTMGradOpDescMaker);
313
REGISTER_OPERATOR(lstm_grad, ops::LSTMGradOp);
Q
QI JUN 已提交
314 315 316 317 318 319
REGISTER_OP_CPU_KERNEL(
    lstm, ops::LSTMKernel<paddle::platform::CPUDeviceContext, float>,
    ops::LSTMKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    lstm_grad, ops::LSTMGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::LSTMGradKernel<paddle::platform::CPUDeviceContext, double>);