pool_compute_test.cc 9.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/lite/kernels/arm/pool_compute.h"
#include <gtest/gtest.h>
#include <limits>
#include <string>
#include <vector>
#include "paddle/fluid/lite/arm/math/funcs.h"
#include "paddle/fluid/lite/core/op_registry.h"

namespace paddle {
namespace lite {
namespace kernels {
namespace arm {

void pool_compute_ref(const operators::PoolParam& param) {
  auto& in_dims = param.x->dims();
  auto& out_dims = param.output->dims();

  const float* src_ptr = param.x->data<const float>();
  float* dst_ptr = param.output->mutable_data<float>();

  std::vector<int> ksize = param.ksize;
  std::vector<int> strides = param.strides;
  std::vector<int> paddings = param.paddings;

  std::string pooling_type = param.pooling_type;
  bool global_pooling = param.global_pooling;
  bool exclusive = param.exclusive;
  bool adaptive = param.adaptive;
  bool ceil_mode = param.ceil_mode;
  bool use_quantizer = param.use_quantizer;
  std::string data_format = param.data_format;

  int in_n = in_dims[0];
  int in_c = in_dims[1];
  int in_h = in_dims[2];
  int in_w = in_dims[3];
  int size_in_n = in_c * in_h * in_w;
  int size_in_c = in_h * in_w;

  int out_h = out_dims[2];
  int out_w = out_dims[3];
  int size_out_n = in_c * out_h * out_w;
  int size_out_c = out_h * out_w;

  int window_h = ksize[0];
  int window_w = ksize[1];
  int stride_h = strides[0];
  int stride_w = strides[1];
  int pad_h = paddings[0];
  int pad_w = paddings[1];

  if (global_pooling == true) {
    ksize[0] = in_h;
    ksize[1] = in_w;
  }

#if 0
  for (int i = 0; i < ksize.size(); ++i) {
    LOG(INFO) << "ksize[" << i << "]:" << ksize[i];
  }
  for (int i = 0; i < strides.size(); ++i) {
    LOG(INFO) << "strides[" << i << "]:" << strides[i];
  }
  for (int i = 0; i < paddings.size(); ++i) {
    LOG(INFO) << "paddings[" << i << "]:" << paddings[i];
  }
  LOG(INFO) << "in nchw:" << in_n << ", " << in_c << ", " << in_h << ", "
            << in_w;
  LOG(INFO) << "size_in_n:" << size_in_n;
  LOG(INFO) << "size_out_c:" << size_out_c;
  LOG(INFO) << "out_h:" << out_h;
  LOG(INFO) << "out_w:" << out_w;
  LOG(INFO) << "size_out_n:" << size_out_n;
  LOG(INFO) << "size_out_c:" << size_out_c;
  LOG(INFO) << "window_h:" << window_h;
  LOG(INFO) << "window_w:" << window_w;
  LOG(INFO) << "stride_h:" << stride_h;
  LOG(INFO) << "stride_w:" << stride_w;
  LOG(INFO) << "pad_h:" << pad_h;
  LOG(INFO) << "pad_w:" << pad_w;
#endif

  for (int ind_n = 0; ind_n < in_n; ++ind_n) {
    for (int ind_c = 0; ind_c < in_c; ++ind_c) {
      for (int ind_h = 0; ind_h < out_h; ++ind_h) {
        int sh = ind_h * stride_h;
        int eh = sh + window_h;
        sh = (sh - pad_h) < 0 ? 0 : sh - pad_h;
        eh = (eh - pad_h) > in_h ? in_h : eh - pad_h;

        for (int ind_w = 0; ind_w < out_w; ++ind_w) {
          int sw = ind_w * stride_w;
          int ew = sw + window_w;
          sw = (sw - pad_w) < 0 ? 0 : sw - pad_w;
          ew = (ew - pad_w) > in_w ? in_w : ew - pad_w;

          float result = static_cast<float>(0);

          int dst_ind =
              ind_n * size_out_n + ind_c * size_out_c + ind_h * out_w + ind_w;

          for (int kh = sh; kh < eh; ++kh) {
            for (int kw = sw; kw < ew; ++kw) {
              int src_ind =
                  ind_n * size_in_n + ind_c * size_in_c + kh * in_w + kw;

              if (kh == sh && kw == sw) {
                result = src_ptr[src_ind];
              } else {
                if (pooling_type == "max") {
                  result =
                      result >= src_ptr[src_ind] ? result : src_ptr[src_ind];
                }
                if (pooling_type == "avg" && exclusive == false) {
                  // Pooling_average_include_padding
                  result += src_ptr[src_ind];
                }
                if (pooling_type == "avg" && exclusive == true) {
                  // Pooling_average_include_padding
                  result += src_ptr[src_ind];
                }
              }
            }
          }
          if (pooling_type == "avg" && exclusive == false) {
            // Pooling_average_include_padding
            // result /= param.window_h * param.window_w;
            // LOG(ERROR)<<"cpu"<<param.window_h * param.window_w;
            int bh = window_h;
            int bw = window_w;
            if (ew == in_w) {
              bw = sw + window_w >= in_w + pad_w ? in_w + pad_w : sw + window_w;
              bw -= sw;
            }
            if (eh == in_h) {
              bh = sh + window_h >= in_h + pad_h ? in_h + pad_h : sh + window_h;
              bh -= sh;
            }
            result /= bh * bw;
          }
          if (pooling_type == "avg" && exclusive == true) {
            // Pooling_average_exclude_padding
            result /= (ew - sw) * (eh - sh);
          }
          dst_ptr[dst_ind] = result;
        }
      }
    }
  }
}

TEST(pool_arm, init) {
  PoolCompute pool;
  ASSERT_EQ(pool.precision(), PRECISION(kFloat));
  ASSERT_EQ(pool.target(), TARGET(kARM));
}

TEST(pool_arm, compute) {
  PoolCompute pool;
  operators::PoolParam param;

  lite::Tensor x;
  lite::Tensor output;
  lite::Tensor output_ref;

  for (auto pooling_type : {"avg", "max"}) {
    for (auto global_pooling : {true}) {
      for (auto stride : {2}) {
        for (auto pad : {0}) {
          for (auto n : {1, 3, 4, 11}) {
T
tensor-tang 已提交
185
            for (auto c : {1, 3, 11 /* ,1024 */}) {  // speedup for ci
186 187
              for (auto h : {3, 1, 11, 4, 1}) {
                for (auto w : {1, 3, 4, 12, 1}) {
T
Develop  
Tensor Tang 已提交
188 189 190 191
                  VLOG(3) << "n:" << n << " c:" << c << " h:" << h << " w:" << w
                          << " stride:" << stride << " pad:" << pad
                          << " pooling_type:" << pooling_type
                          << " global_pooling:" << global_pooling;
192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241

                  // init x, output
                  x.Resize(DDim(std::vector<int64_t>({n, c, h, w})));
                  output.Resize(DDim(std::vector<int64_t>({n, c, 1, 1})));
                  output_ref.Resize(DDim(std::vector<int64_t>({n, c, 1, 1})));
                  auto* x_data = x.mutable_data<float>();
                  for (int i = 0; i < x.dims().production(); ++i) {
                    x_data[i] = i;
                  }

                  // fill param
                  param.x = &x;
                  param.output = &output;
                  param.pooling_type = pooling_type;
                  param.ksize = {h, w};
                  param.global_pooling = global_pooling;
                  param.strides = {stride, stride};
                  param.paddings = {pad, pad};
                  param.exclusive = true;
                  param.adaptive = false;
                  param.ceil_mode = false;
                  param.use_quantizer = false;

                  // compute
                  pool.SetParam(param);
                  pool.Run();

#if 0
          LOG(INFO) << "n:" << n << " c:" << c << " h:" << h << " w:" << w
                    << " end";
          std::cout << "n:" << n << " c:" << c << " h:" << h << " w:" << w
                    << " end" << std::endl;
          for (int i = 0; i < param.ksize.size(); ++i) {
            std::cout << " ksize[" << i << "]:" << param.ksize[i];
          }
          std::cout << "\n";
          for (int i = 0; i < param.strides.size(); ++i) {
            std::cout << " strides[" << i << "]:" << param.strides[i];
          }
          std::cout << "\n";
          for (int i = 0; i < param.paddings.size(); ++i) {
            std::cout << " paddings[" << i << "]:" << param.paddings[i];
          }
          std::cout << "\n";
#endif

                  // compute ref
                  // output_ref.Resize(output.dims());
                  param.output = &output_ref;
                  pool_compute_ref(param);
T
Develop  
Tensor Tang 已提交
242
                  VLOG(3) << "pool_compute_ref(param) end";
243 244 245 246 247 248 249 250 251

                  // compare
                  auto* output_data = output.mutable_data<float>();
                  auto* output_ref_data = output_ref.mutable_data<float>();
                  for (int i = 0; i < output.dims().production(); i++) {
                    EXPECT_NEAR(output_data[i], output_ref_data[i],
                                1);  // 1e-5);
                  }

T
Develop  
Tensor Tang 已提交
252
                  VLOG(3) << "compare pass";
253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
                }
              }
            }
          }
        }  // pad
      }    // stride
    }      // global_pooling
  }        // pooling_type
}

TEST(pool, retrive_op) {
  auto pool =
      KernelRegistry::Global().Create<TARGET(kARM), PRECISION(kFloat)>("pool");
  ASSERT_FALSE(pool.empty());
  ASSERT_TRUE(pool.front());
}

}  // namespace arm
}  // namespace kernels
}  // namespace lite
}  // namespace paddle

USE_LITE_KERNEL(pool, kARM, kFloat, kNCHW, def);