test_adadelta_op.py 6.5 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import unittest
16

17
import numpy as np
18
from op_test import OpTest
19

J
Jiawei Wang 已提交
20 21
import paddle
import paddle.fluid as fluid
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40


class TestAdadeltaOp1(OpTest):
    def setUp(self):
        self.op_type = "adadelta"
        param = np.random.uniform(-1, 1, (102, 105)).astype("float32")
        grad = np.random.uniform(-1, 1, (102, 105)).astype("float32")
        # The squared gradient is positive
        avg_squared_grad = np.random.random((102, 105)).astype("float32")
        # The squared update is positive
        avg_squared_update = np.random.random((102, 105)).astype("float32")

        rho = 0.95
        epsilon = 1e-6

        self.inputs = {
            'Param': param,
            'Grad': grad,
            'AvgSquaredGrad': avg_squared_grad,
41
            'AvgSquaredUpdate': avg_squared_update,
42 43 44 45
        }

        self.attrs = {'rho': rho, 'epsilon': epsilon}

46 47 48
        avg_squared_grad_out = rho * avg_squared_grad + (1 - rho) * np.square(
            grad
        )
49 50
        update = -np.multiply(
            np.sqrt(
51 52 53 54 55 56
                np.divide(
                    avg_squared_update + epsilon, avg_squared_grad_out + epsilon
                )
            ),
            grad,
        )
57

58 59 60
        avg_squared_update_out = rho * avg_squared_update + (
            1 - rho
        ) * np.square(update)
61 62 63 64 65 66

        param_out = param + update

        self.outputs = {
            'ParamOut': param_out,
            'AvgSquaredGradOut': avg_squared_grad_out,
67
            'AvgSquaredUpdateOut': avg_squared_update_out,
68 69 70 71 72 73 74
        }

    def test_check_output(self):
        self.check_output()


class TestAdadeltaOp2(OpTest):
75
    '''Test Adadelta op with default attribute values'''
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92

    def setUp(self):
        self.op_type = "adadelta"
        param = np.random.uniform(-1, 1, (102, 105)).astype("float32")
        grad = np.random.uniform(-1, 1, (102, 105)).astype("float32")
        # The squared gradient is positive
        avg_squared_grad = np.random.random((102, 105)).astype("float32")
        # The squared update is positive
        avg_squared_update = np.random.random((102, 105)).astype("float32")

        rho = 0.95
        epsilon = 1e-6

        self.inputs = {
            'Param': param,
            'Grad': grad,
            'AvgSquaredGrad': avg_squared_grad,
93
            'AvgSquaredUpdate': avg_squared_update,
94 95
        }

96 97 98
        avg_squared_grad_out = rho * avg_squared_grad + (1 - rho) * np.square(
            grad
        )
99 100
        update = -np.multiply(
            np.sqrt(
101 102 103 104 105 106
                np.divide(
                    avg_squared_update + epsilon, avg_squared_grad_out + epsilon
                )
            ),
            grad,
        )
107

108 109 110
        avg_squared_update_out = rho * avg_squared_update + (
            1 - rho
        ) * np.square(update)
111 112 113 114 115 116

        param_out = param + update

        self.outputs = {
            'ParamOut': param_out,
            'AvgSquaredGradOut': avg_squared_grad_out,
117
            'AvgSquaredUpdateOut': avg_squared_update_out,
118 119 120 121 122 123
        }

    def test_check_output(self):
        self.check_output()


J
Jiawei Wang 已提交
124 125 126 127 128 129 130
class TestAdadeltaV2(unittest.TestCase):
    def test_adadelta_dygraph(self):
        paddle.disable_static(paddle.CPUPlace())
        value = np.arange(26).reshape(2, 13).astype("float32")
        a = paddle.to_tensor(value)
        linear = paddle.nn.Linear(13, 5)
        # This can be any optimizer supported by dygraph.
131 132 133 134 135
        adam = paddle.optimizer.Adadelta(
            learning_rate=0.01,
            parameters=linear.parameters(),
            weight_decay=0.01,
        )
J
Jiawei Wang 已提交
136 137 138 139 140 141
        out = linear(a)
        out.backward()
        adam.step()
        adam.clear_gradients()

    def test_adadelta(self):
142
        paddle.enable_static()
J
Jiawei Wang 已提交
143 144 145 146 147 148
        place = fluid.CPUPlace()
        main = fluid.Program()
        with fluid.program_guard(main):
            x = fluid.layers.data(name='x', shape=[13], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='float32')
            y_predict = fluid.layers.fc(input=x, size=1, act=None)
149 150 151
            cost = paddle.nn.functional.square_error_cost(
                input=y_predict, label=y
            )
152
            avg_cost = paddle.mean(cost)
J
Jiawei Wang 已提交
153 154 155 156 157

            rms_optimizer = paddle.optimizer.Adadelta(learning_rate=0.1)
            rms_optimizer.minimize(avg_cost)

            fetch_list = [avg_cost]
158 159 160
            train_reader = paddle.batch(
                paddle.dataset.uci_housing.train(), batch_size=1
            )
J
Jiawei Wang 已提交
161 162 163 164 165 166 167 168
            feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            for data in train_reader():
                exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)

    def test_raise_error(self):
        self.assertRaises(ValueError, paddle.optimizer.Adadelta, None)
169 170 171 172 173 174 175 176 177
        self.assertRaises(
            ValueError, paddle.optimizer.Adadelta, learning_rate=0.1, rho=None
        )
        self.assertRaises(
            ValueError,
            paddle.optimizer.Adadelta,
            learning_rate=0.1,
            epsilon=None,
        )
J
Jiawei Wang 已提交
178 179


180 181 182 183 184 185 186 187
class TestAdadeltaV2Group(TestAdadeltaV2):
    def test_adadelta_dygraph(self):
        paddle.disable_static(paddle.CPUPlace())
        value = np.arange(26).reshape(2, 13).astype("float32")
        a = paddle.to_tensor(value)
        linear_1 = paddle.nn.Linear(13, 5)
        linear_2 = paddle.nn.Linear(5, 5)
        # This can be any optimizer supported by dygraph.
188 189 190 191 192 193 194 195 196 197 198
        adam = paddle.optimizer.Adadelta(
            learning_rate=0.01,
            parameters=[
                {'params': linear_1.parameters()},
                {
                    'params': linear_2.parameters(),
                    'weight_decay': 0.001,
                },
            ],
            weight_decay=0.1,
        )
199 200 201 202 203 204 205
        out = linear_1(a)
        out = linear_2(out)
        out.backward()
        adam.step()
        adam.clear_gradients()


206 207
if __name__ == "__main__":
    unittest.main()