lod_tensor_to_array_op.cc 6.2 KB
Newer Older
L
Luo Tao 已提交
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14 15 16
#include "paddle/framework/lod_rank_table.h"
#include "paddle/framework/lod_tensor_array.h"
#include "paddle/framework/op_registry.h"
17
#include "paddle/operators/detail/safe_ref.h"
D
dzhwinter 已提交
18
#include "paddle/platform/device_context.h"
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

namespace paddle {
namespace operators {

struct CopyRange {
  size_t begin;
  size_t end;
};

class LoDTensorToArrayOp : public framework::OperatorBase {
 public:
  LoDTensorToArrayOp(const std::string &type,
                     const framework::VariableNameMap &inputs,
                     const framework::VariableNameMap &outputs,
                     const framework::AttributeMap &attrs)
      : OperatorBase(type, inputs, outputs, attrs) {}
  void Run(const framework::Scope &scope,
D
dzhwinter 已提交
36
           const platform::Place &place) const override {
37 38 39 40 41 42 43
    auto &x = detail::Ref(scope.FindVar(Input("X")), "Cannot find input %s",
                          Input("X"))
                  .Get<framework::LoDTensor>();
    auto &rank_table = detail::Ref(scope.FindVar(Input("RankTable")))
                           .Get<framework::LoDRankTable>();
    auto &out = *detail::Ref(scope.FindVar(Output("Out")))
                     .GetMutable<framework::LoDTensorArray>();
44 45 46
    auto &items = rank_table.items();
    auto max_seq_len = items[0].length;
    auto rank_level = rank_table.level();
47 48 49 50

    PADDLE_ENFORCE_LT(rank_level, x.lod().size(),
                      "Input should be a LOD tensor, and size is at least %d",
                      rank_level + 1);
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
    out.resize(max_seq_len);
    std::vector<std::vector<CopyRange>> copy_ranges(max_seq_len);

    // set out[i] lod
    for (size_t t = 0; t < max_seq_len; t++) {
      auto &lod = *out[t].mutable_lod();
      lod.clear();
      for (auto &item : items) {
        if (t >= item.length) {
          break;
        }
        size_t start_idx = x.lod()[rank_level][item.index] + t;
        auto lod_and_offset = framework::GetSubLoDAndAbsoluteOffset(
            x.lod(), start_idx, start_idx + 1, rank_level + 1);
        auto &lod_length = lod_and_offset.first;
        framework::AppendLoD(&lod, lod_length);
        size_t start_offset = lod_and_offset.second.first;
        size_t end_offset = lod_and_offset.second.second;
        copy_ranges[t].emplace_back(CopyRange{start_offset, end_offset});
      }
    }
    for (size_t i = 0; i < max_seq_len; ++i) {
      auto &ranges = copy_ranges[i];
      size_t height = std::accumulate(
          ranges.begin(), ranges.end(), 0UL,
          [](size_t a, const CopyRange &b) { return a + b.end - b.begin; });
      auto x_dim = x.dims();
      x_dim[0] = static_cast<int64_t>(height);
      out[i].Resize(x_dim);
      out[i].mutable_data(x.place(), x.type());
      size_t offset = 0;
      for (auto &each_range : ranges) {
        size_t len = each_range.end - each_range.begin;
        if (len == 0) {
          continue;
        }
        // out[i][offset: offset+len] = x[each_range.begin: each_range.end]
D
dzhwinter 已提交
88 89
        auto slice = out[i].Slice(static_cast<int>(offset),
                                  static_cast<int>(offset + len));
D
dzhwinter 已提交
90

Y
Yu Yang 已提交
91 92 93
        platform::DeviceContextPool &pool =
            platform::DeviceContextPool::Instance();
        auto &dev_ctx = *pool.Get(place);
D
dzhwinter 已提交
94

D
dzhwinter 已提交
95 96 97
        framework::CopyFrom(x.Slice(static_cast<int>(each_range.begin),
                                    static_cast<int>(each_range.end)),
                            x.place(), dev_ctx, &slice);
98 99 100 101 102 103 104 105
        offset += len;
      }
    }
  }
};

class LoDTensorToArrayOpProtoMaker : public framework::OpProtoAndCheckerMaker {
 public:
106
  LoDTensorToArrayOpProtoMaker(OpProto *proto, OpAttrChecker *op_checker)
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput("X", "");
    AddInput("RankTable", "");
    AddOutput("Out", "");
    AddComment("");
  }
};

class LoDTensorToArrayInferShape : public framework::InferShapeBase {
 public:
  void operator()(framework::InferShapeContext *context) const override {
    PADDLE_ENFORCE(context->HasInput("X"),
                   "Input(X) of LoDTensorToArrayOp should not be null.");
    PADDLE_ENFORCE(
        context->HasInput("RankTable"),
        "Input(RankTable) of LoDTensorToArrayOp should not be null.");

    PADDLE_ENFORCE(context->HasOutput("Out"),
                   "Output(Out) of LoDTensorToArrayOp should not be null.");

    auto x_dim = context->GetInputDim("X");
    // The first dim of each LoDTensor in Output can only be set at run-time.;
    // We still have to Resize each LoDTensor in Output.
    context->SetOutputDim("Out", x_dim);
  }
};

class LoDTensorToArrayInferVarType : public framework::VarTypeInference {
 public:
Y
Yu Yang 已提交
136 137
  void operator()(const framework::OpDesc &op_desc,
                  framework::BlockDesc *block) const override {
138
    for (auto &out_var : op_desc.Output("Out")) {
139
      block->Var(out_var)->SetType(framework::proto::VarDesc::LOD_TENSOR_ARRAY);
140 141 142 143
    }
  }
};

144 145 146 147 148
class LoDTensorToArrayGradMaker : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

 protected:
Y
Yu Yang 已提交
149 150
  std::unique_ptr<framework::OpDesc> Apply() const override {
    auto *grad_op = new framework::OpDesc();
151 152 153 154 155
    grad_op->SetType("array_to_lod_tensor");
    grad_op->SetInput("X", OutputGrad("Out"));
    grad_op->SetInput("RankTable", Input("RankTable"));
    grad_op->SetOutput("Out", InputGrad("X"));
    grad_op->SetAttrMap(Attrs());
Y
Yu Yang 已提交
156
    return std::unique_ptr<framework::OpDesc>(grad_op);
157 158 159
  }
};

160 161 162 163 164 165 166
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(lod_tensor_to_array, ops::LoDTensorToArrayOp,
                  ops::LoDTensorToArrayOpProtoMaker,
                  ops::LoDTensorToArrayInferShape,
167 168
                  ops::LoDTensorToArrayInferVarType,
                  ops::LoDTensorToArrayGradMaker);