tensorrt_engine_op_test.cc 8.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "paddle/fluid/operators/tensorrt_engine_op.h"
16 17 18 19 20 21 22
#include <gtest/gtest.h>
#include "paddle/fluid/framework/block_desc.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_desc.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/program_desc.h"
#include "paddle/fluid/framework/scope.h"
23
#include "paddle/fluid/inference/analysis/helper.h"
24 25 26
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
#include "paddle/fluid/inference/tensorrt/convert/ut_helper.h"

N
nhzlx 已提交
27
USE_CUDA_ONLY_OP(tensorrt_engine);
28 29 30 31 32

namespace paddle {
namespace operators {

namespace {
N
nhzlx 已提交
33 34
void CreateCUDATensor(framework::Scope* scope, const std::string& name,
                      const std::vector<int64_t>& shape) {
35 36 37 38
  auto* var = scope->Var(name);
  auto* tensor = var->GetMutable<framework::LoDTensor>();
  auto dims = framework::make_ddim(shape);
  tensor->Resize(dims);
N
nhzlx 已提交
39 40
  platform::CUDAPlace place;
  platform::CUDADeviceContext ctx(place);
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
  inference::tensorrt::RandomizeTensor(tensor, place, ctx);
}

void AddTensorToBlockDesc(framework::proto::BlockDesc* block,
                          const std::string& name,
                          const std::vector<int64_t>& shape) {
  using framework::proto::VarType;
  auto* var = block->add_vars();
  framework::VarDesc desc(name);
  desc.SetType(VarType::LOD_TENSOR);
  desc.SetDataType(VarType::FP32);
  desc.SetShape(shape);
  *var = *desc.Proto();
}

}  // namespace

58 59
using inference::analysis::SetAttr;

60
TEST(TensorRTEngineOp, manual) {
61 62
  FLAGS_tensorrt_engine_batch_size = 2;
  FLAGS_tensorrt_max_batch_size = 2;
63 64 65 66 67 68 69
  framework::ProgramDesc program;
  auto* block_ = program.Proto()->add_blocks();
  block_->set_idx(0);
  block_->set_parent_idx(-1);

  LOG(INFO) << "create block desc";
  framework::BlockDesc block_desc(&program, block_);
70 71
  LOG(INFO) << "create fc op";
  auto* fc0 = block_desc.AppendOp();
N
nhzlx 已提交
72
  fc0->SetType("fc");
73 74 75
  fc0->SetInput("X", std::vector<std::string>({"x"}));     // 4 x 1 x 1
  fc0->SetInput("Y", std::vector<std::string>({"y"}));     // 4 x 6
  fc0->SetOutput("Out", std::vector<std::string>({"z"}));  // 6 x 1 x 1
76 77

  LOG(INFO) << "create fc op";
78
  auto* fc1 = block_desc.AppendOp();
N
nhzlx 已提交
79
  fc1->SetType("fc");
80 81 82
  fc1->SetInput("X", std::vector<std::string>({"z"}));
  fc1->SetInput("Y", std::vector<std::string>({"y0"}));     // 6 x 8
  fc1->SetOutput("Out", std::vector<std::string>({"z0"}));  // 8 x 1 x 1
83 84

  // Set inputs' variable shape in BlockDesc
85 86
  // the batch size is 2, so the dims of 'x' is {2, 4, 1, 1}
  AddTensorToBlockDesc(block_, "x", std::vector<int64_t>({2, 4, 1, 1}));
87 88 89 90 91
  AddTensorToBlockDesc(block_, "y", std::vector<int64_t>({4, 6}));
  AddTensorToBlockDesc(block_, "y0", std::vector<int64_t>({6, 8}));
  AddTensorToBlockDesc(block_, "z", std::vector<int64_t>({2, 6}));

  // It is wired, need to copy manually.
92 93
  *block_->add_ops() = *fc0->Proto();
  *block_->add_ops() = *fc1->Proto();
94 95 96 97 98 99

  ASSERT_EQ(block_->ops_size(), 2);

  LOG(INFO) << "create tensorrt desc";
  framework::OpDesc engine_op_desc(nullptr);
  engine_op_desc.SetType("tensorrt_engine");
100
  engine_op_desc.SetInput("Xs", std::vector<std::string>({"x"}));
101 102 103
  engine_op_desc.SetOutput("Ys", std::vector<std::string>({"z0"}));
  SetAttr<std::string>(engine_op_desc.Proto(), "subgraph",
                       block_->SerializeAsString());
Y
Yan Chunwei 已提交
104 105 106
  SetAttr<std::string>(engine_op_desc.Proto(), "engine_uniq_key", "a_engine");
  SetAttr<std::vector<std::string>>(engine_op_desc.Proto(), "parameters",
                                    std::vector<std::string>({}));
N
nhzlx 已提交
107 108
  SetAttr<std::vector<std::string>>(engine_op_desc.Proto(),
                                    "output_name_mapping",
N
nhzlx 已提交
109
                                    std::vector<std::string>({"z0"}));
110 111 112

  LOG(INFO) << "create engine op";
  auto engine_op = framework::OpRegistry::CreateOp(*engine_op_desc.Proto());
Y
Yan Chunwei 已提交
113
  LOG(INFO) << "engine_op " << engine_op.get();
114 115

  framework::Scope scope;
N
nhzlx 已提交
116 117
  platform::CUDAPlace place;
  platform::CUDADeviceContext ctx(place);
118
  // Prepare variables.
N
nhzlx 已提交
119 120 121
  CreateCUDATensor(&scope, "x", std::vector<int64_t>({2, 4}));
  CreateCUDATensor(&scope, "y", std::vector<int64_t>({4, 6}));
  CreateCUDATensor(&scope, "z", std::vector<int64_t>({2, 6}));
122

N
nhzlx 已提交
123 124
  CreateCUDATensor(&scope, "y0", std::vector<int64_t>({6, 8}));
  CreateCUDATensor(&scope, "z0", std::vector<int64_t>({2, 8}));
125 126 127 128 129 130

  // Execute them.
  LOG(INFO) << "engine_op run";
  engine_op->Run(scope, place);
}

Y
Yan Chunwei 已提交
131
void Execute(int batch_size, int input_dim, int output_dim, int nlayers = 1) {
132 133
  FLAGS_tensorrt_engine_batch_size = batch_size;
  FLAGS_tensorrt_max_batch_size = batch_size;
Y
Yan Chunwei 已提交
134 135
  framework::ProgramDesc program;
  framework::Scope scope;
N
nhzlx 已提交
136 137
  platform::CUDAPlace place;
  platform::CUDADeviceContext ctx(place);
Y
Yan Chunwei 已提交
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170

  auto* block_ = program.Proto()->add_blocks();
  block_->set_idx(0);
  block_->set_parent_idx(-1);

  using shape_t = std::vector<int64_t>;

  LOG(INFO) << "create block desc";
  framework::BlockDesc block_desc(&program, block_);

  auto AddFCLayer = [&](const std::string& x_name, const std::string& y_name,
                        const std::string& z_name, bool x_created,
                        const shape_t& x_shape, const shape_t& y_shape,
                        const shape_t& z_shape) {
    LOG(INFO) << "create fc op";
    auto* fc = block_desc.AppendOp();
    fc->SetType("mul");
    fc->SetInput("X", std::vector<std::string>({x_name}));
    fc->SetInput("Y", std::vector<std::string>({y_name}));
    fc->SetOutput("Out", std::vector<std::string>({z_name}));

    // Set inputs' variable shape in BlockDesc
    if (!x_created) {
      AddTensorToBlockDesc(block_, x_name,
                           std::vector<int64_t>({batch_size, input_dim, 1, 1}));
    }
    AddTensorToBlockDesc(block_, y_name,
                         std::vector<int64_t>({input_dim, output_dim}));
    AddTensorToBlockDesc(block_, z_name,
                         std::vector<int64_t>({batch_size, output_dim}));

    // Prepare variables.
    if (!x_created) {
N
nhzlx 已提交
171
      CreateCUDATensor(&scope, x_name, std::vector<int64_t>(x_shape));
Y
Yan Chunwei 已提交
172
    }
N
nhzlx 已提交
173 174
    CreateCUDATensor(&scope, y_name, std::vector<int64_t>(y_shape));
    CreateCUDATensor(&scope, z_name, std::vector<int64_t>(z_shape));
Y
Yan Chunwei 已提交
175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204

    // It is wired, need to copy manually.
    *block_->add_ops() = *fc->Proto();
  };

  // Test with 4 layer FC
  AddFCLayer("x0", "y0", "z0", false, {batch_size, input_dim},
             {input_dim, output_dim}, {batch_size, output_dim});
  AddFCLayer("z0", "y1", "z1", true, {}, {output_dim, output_dim},
             {batch_size, output_dim});
  AddFCLayer("z1", "y2", "z2", true, {}, {output_dim, output_dim},
             {batch_size, output_dim});
  AddFCLayer("z2", "y3", "z3", true, {}, {output_dim, output_dim},
             {batch_size, output_dim});

  LOG(INFO) << "create tensorrt desc";
  framework::OpDesc engine_op_desc(nullptr);
  engine_op_desc.SetType("tensorrt_engine");
  engine_op_desc.SetInput("Xs", std::vector<std::string>({"x0"}));
  engine_op_desc.SetOutput("Ys", std::vector<std::string>({"z3"}));

  SetAttr<std::string>(engine_op_desc.Proto(), "subgraph",
                       block_->SerializeAsString());
  SetAttr<int>(engine_op_desc.Proto(), "max_batch", batch_size);
  SetAttr<int>(engine_op_desc.Proto(), "max_workspace", 2 << 10);
  SetAttr<std::vector<std::string>>(
      engine_op_desc.Proto(), "parameters",
      std::vector<std::string>({"y0", "y1", "y2", "y3"}));
  SetAttr<std::string>(engine_op_desc.Proto(), "engine_uniq_key", "b_engine");

N
nhzlx 已提交
205 206
  SetAttr<std::vector<std::string>>(engine_op_desc.Proto(),
                                    "output_name_mapping",
N
nhzlx 已提交
207 208
                                    std::vector<std::string>({"z3"}));

Y
Yan Chunwei 已提交
209 210 211 212 213 214 215
  auto engine_op = framework::OpRegistry::CreateOp(*engine_op_desc.Proto());

  // Execute them.
  engine_op->Run(scope, place);
}

// Test with a larger FC layer.
Y
Yan Chunwei 已提交
216
TEST(TensorRTEngineOp, fc) { Execute(40, 28, 28); }
Y
Yan Chunwei 已提交
217

218 219 220
}  // namespace operators
}  // namespace paddle

N
nhzlx 已提交
221
USE_TRT_CONVERTER(fc)