analyzer_tester.cc 13.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/inference/analysis/analyzer.h"
16

17
#include <google/protobuf/text_format.h>
18
#include <gtest/gtest.h>
19
#include "paddle/fluid/framework/ir/pass.h"
20
#include "paddle/fluid/inference/analysis/ut_helper.h"
21
#include "paddle/fluid/inference/api/helper.h"
22
#include "paddle/fluid/inference/api/paddle_inference_api.h"
23

24 25 26
DEFINE_string(infer_ditu_rnn_model, "", "model path for ditu RNN");
DEFINE_string(infer_ditu_rnn_data, "", "data path for ditu RNN");

27 28 29 30
namespace paddle {
namespace inference {
namespace analysis {

Y
Yan Chunwei 已提交
31
TEST(Analyzer, analysis_without_tensorrt) {
32
  FLAGS_IA_enable_tensorrt_subgraph_engine = false;
Y
Yan Chunwei 已提交
33 34
  Argument argument;
  argument.fluid_model_dir.reset(new std::string(FLAGS_inference_model_dir));
35 36 37 38
  Analyzer analyser;
  analyser.Run(&argument);
}

Y
Yan Chunwei 已提交
39
TEST(Analyzer, analysis_with_tensorrt) {
40
  FLAGS_IA_enable_tensorrt_subgraph_engine = true;
Y
Yan Chunwei 已提交
41 42
  Argument argument;
  argument.fluid_model_dir.reset(new std::string(FLAGS_inference_model_dir));
43 44 45 46
  Analyzer analyser;
  analyser.Run(&argument);
}

47
void TestWord2vecPrediction(const std::string &model_path) {
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
  NativeConfig config;
  config.model_dir = model_path;
  config.use_gpu = false;
  config.device = 0;
  auto predictor =
      ::paddle::CreatePaddlePredictor<NativeConfig, PaddleEngineKind::kNative>(
          config);

  // One single batch

  int64_t data[4] = {1, 2, 3, 4};
  PaddleTensor tensor;
  tensor.shape = std::vector<int>({4, 1});
  tensor.data = PaddleBuf(data, sizeof(data));
  tensor.dtype = PaddleDType::INT64;

  // For simplicity, we set all the slots with the same data.
  std::vector<PaddleTensor> slots(4, tensor);
  std::vector<PaddleTensor> outputs;
  CHECK(predictor->Run(slots, &outputs));

  PADDLE_ENFORCE(outputs.size(), 1UL);
  // Check the output buffer size and result of each tid.
  PADDLE_ENFORCE(outputs.front().data.length(), 33168UL);
  float result[5] = {0.00129761, 0.00151112, 0.000423564, 0.00108815,
                     0.000932706};
  const size_t num_elements = outputs.front().data.length() / sizeof(float);
  // The outputs' buffers are in CPU memory.
  for (size_t i = 0; i < std::min(5UL, num_elements); i++) {
    LOG(INFO) << "data: "
78 79
              << static_cast<float *>(outputs.front().data.data())[i];
    PADDLE_ENFORCE(static_cast<float *>(outputs.front().data.data())[i],
80 81 82 83
                   result[i]);
  }
}

84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
namespace {

struct DataRecord {
  std::vector<std::vector<std::vector<float>>> link_step_data_all;
  std::vector<std::vector<float>> week_data_all, minute_data_all;
  std::vector<size_t> lod1, lod2, lod3;
  std::vector<std::vector<float>> rnn_link_data, rnn_week_datas,
      rnn_minute_datas;
  size_t batch_iter{0};
  size_t batch_size{1};
  DataRecord() = default;
  DataRecord(const std::string &path, int batch_size = 1)
      : batch_size(batch_size) {
    Load(path);
  }
  DataRecord NextBatch() {
    DataRecord data;
    size_t batch_end = batch_iter + batch_size;
    // NOTE skip the final batch, if no enough data is provided.
    if (batch_end <= link_step_data_all.size()) {
      data.link_step_data_all.assign(link_step_data_all.begin() + batch_iter,
                                     link_step_data_all.begin() + batch_end);
      data.week_data_all.assign(week_data_all.begin() + batch_iter,
                                week_data_all.begin() + batch_end);
      data.minute_data_all.assign(minute_data_all.begin() + batch_iter,
                                  minute_data_all.begin() + batch_end);
      // Prepare LoDs
      data.lod1.push_back(0);
      data.lod2.push_back(0);
      data.lod3.push_back(0);
      CHECK(!data.link_step_data_all.empty()) << "empty";
      CHECK(!data.week_data_all.empty());
      CHECK(!data.minute_data_all.empty());
      CHECK_EQ(data.link_step_data_all.size(), data.week_data_all.size());
      CHECK_EQ(data.minute_data_all.size(), data.link_step_data_all.size());
      for (size_t j = 0; j < data.link_step_data_all.size(); j++) {
        for (const auto &d : data.link_step_data_all[j]) {
          data.rnn_link_data.push_back(d);
        }
        data.rnn_week_datas.push_back(data.week_data_all[j]);
        data.rnn_minute_datas.push_back(data.minute_data_all[j]);
        // calculate lod
        data.lod1.push_back(data.lod1.back() +
                            data.link_step_data_all[j].size());
        data.lod3.push_back(data.lod3.back() + 1);
        for (size_t i = 1; i < data.link_step_data_all[j].size() + 1; i++) {
          data.lod2.push_back(data.lod2.back() +
                              data.link_step_data_all[j].size());
        }
      }
    }
    batch_iter += batch_size;
    return data;
  }
  void Load(const std::string &path) {
    std::ifstream file(path);
    std::string line;
    int num_lines = 0;
    while (std::getline(file, line)) {
      num_lines++;
      std::vector<std::string> data;
      split(line, ':', &data);
      std::vector<std::vector<float>> link_step_data;
      std::vector<std::string> link_datas;
      split(data[0], '|', &link_datas);
      for (auto &step_data : link_datas) {
        std::vector<float> tmp;
        split_to_float(step_data, ',', &tmp);
        link_step_data.push_back(tmp);
      }
      // load week data
      std::vector<float> week_data;
      split_to_float(data[2], ',', &week_data);
      // load minute data
      std::vector<float> minute_data;
      split_to_float(data[1], ',', &minute_data);
      link_step_data_all.push_back(std::move(link_step_data));
      week_data_all.push_back(std::move(week_data));
      minute_data_all.push_back(std::move(minute_data));
    }
  }
};
void PrepareInputs(std::vector<PaddleTensor> *input_slots, DataRecord *data,
                   int batch_size) {
  // DataRecord data(FLAGS_datapath, batch_size);
  PaddleTensor lod_attention_tensor, init_zero_tensor, lod_tensor_tensor,
      week_tensor, minute_tensor;
  lod_attention_tensor.name = "data_lod_attention";
  init_zero_tensor.name = "cell_init";
  lod_tensor_tensor.name = "data";
  week_tensor.name = "week";
  minute_tensor.name = "minute";
  auto one_batch = data->NextBatch();
  // clang-format off
  std::vector<int> rnn_link_data_shape
      ({static_cast<int>(one_batch.rnn_link_data.size()), static_cast<int>(one_batch.rnn_link_data.front().size())});
  lod_attention_tensor.shape.assign({1, 2});
  lod_attention_tensor.lod.assign({one_batch.lod1, one_batch.lod2});
  init_zero_tensor.shape.assign({batch_size, 15});
  init_zero_tensor.lod.assign({one_batch.lod3});
  lod_tensor_tensor.shape = rnn_link_data_shape;
  lod_tensor_tensor.lod.assign({one_batch.lod1});
  week_tensor.shape.assign({(int) one_batch.rnn_week_datas.size(), (int) one_batch.rnn_week_datas.front().size()});
  week_tensor.lod.assign({one_batch.lod3});
  minute_tensor.shape.assign({(int) one_batch.rnn_minute_datas.size(),
                              (int) one_batch.rnn_minute_datas.front().size()});
  minute_tensor.lod.assign({one_batch.lod3});
  // assign data
  TensorAssignData(&lod_attention_tensor, std::vector<std::vector<float>>({{0, 0}}));
  std::vector<float> tmp_zeros(batch_size * 15, 0.);
  TensorAssignData(&init_zero_tensor, {tmp_zeros});
  TensorAssignData(&lod_tensor_tensor, one_batch.rnn_link_data);
  TensorAssignData(&week_tensor, one_batch.rnn_week_datas);
  TensorAssignData(&minute_tensor, one_batch.rnn_minute_datas);
  // clang-format on
  // Set inputs.
  auto init_zero_tensor1 = init_zero_tensor;
  init_zero_tensor1.name = "hidden_init";
  input_slots->assign({week_tensor, init_zero_tensor, minute_tensor,
                       init_zero_tensor1, lod_attention_tensor,
                       lod_tensor_tensor});
  for (auto &tensor : *input_slots) {
    tensor.dtype = PaddleDType::FLOAT32;
  }
}

std::string DescribeTensor(const PaddleTensor &tensor) {
  std::stringstream os;
  os << "Tensor [" << tensor.name << "]\n";
  os << " - type: ";
  switch (tensor.dtype) {
    case PaddleDType::FLOAT32:
      os << "float32";
      break;
    case PaddleDType::INT64:
      os << "int64";
      break;
    default:
      os << "unset";
  }
  os << '\n';

  os << " - shape: " << to_string(tensor.shape) << '\n';
  os << " - lod: ";
  for (auto &l : tensor.lod) {
    os << to_string(l) << "; ";
  }
  os << "\n";
  os << " - data: ";

  // clang-format off
  int dim = std::accumulate(tensor.shape.begin(),
                            tensor.shape.end(),
                            1,
                            [](int a, int b) { return a * b; });  // clang-format on
  for (size_t i = 0; i < dim; i++) {
    os << static_cast<float *>(tensor.data.data())[i] << " ";
  }
  os << '\n';
  return os.str();
}

}  // namespace

const float ditu_rnn_target_data[] = {
    104.711, 11.2431, 1.35422, 0,       0,       0,       0,       0,
    27.7039, 1.41486, 7.09526, 0,       0,       0,       0,       0,
    7.6481,  6.5324,  56.383,  2.88018, 8.92918, 132.007, 4.27429, 2.02934,
    14.1727, 10.7461, 25.0616, 16.0197, 14.4163, 16.9199, 6.75517, 0,
    80.0249, 4.77739, 0,       0,       0,       0,       0,       0,
    47.5643, 2.67029, 8.76252, 0,       0,       0,       0,       0,
    51.8822, 4.4411,  0,       0,       0,       0,       0,       0,
    10.7286, 12.0595, 10.6672, 0,       0,       0,       0,       0,
    93.5771, 3.84641, 0,       0,       0,       0,       0,       0,
    169.426, 0,       0,       0,       0,       0,       0,       0};
// Test with a really complicate model.
void TestDituRNNPrediction(const std::string &model_path,
                           const std::string &data_path, int batch_size,
                           bool use_analysis, bool activate_ir,
                           int num_times = 1) {
  FLAGS_IA_enable_ir = activate_ir;
  FLAGS_IA_enable_tensorrt_subgraph_engine = false;
  FLAGS_IA_output_storage_path = "./analysis.out";

  std::string model_out;
  if (use_analysis) {
    Argument argument(model_path);
    argument.model_output_store_path.reset(new std::string("./analysis.out"));

    Analyzer analyzer;
    analyzer.Run(&argument);

    // Should get the transformed model stored to ./analysis.out
    model_out = "./analysis.out";
    ASSERT_TRUE(PathExists(model_out));
  } else {
    model_out = FLAGS_infer_ditu_rnn_model;
  }

  NativeConfig config;
  config.prog_file = model_out + "/__model__";
  config.param_file = model_out + "/param";
  config.use_gpu = false;
  config.device = 0;
  config.specify_input_name = true;

  auto predictor =
      CreatePaddlePredictor<NativeConfig, PaddleEngineKind::kNative>(config);
  std::vector<PaddleTensor> input_slots;
  DataRecord data(data_path, batch_size);
  // Prepare inputs.
  PrepareInputs(&input_slots, &data, batch_size);
  std::vector<PaddleTensor> outputs;

  Timer timer;
  timer.tic();
  for (int i = 0; i < num_times; i++) {
    predictor->Run(input_slots, &outputs);
  }
  LOG(INFO) << "time/batch: " << timer.toc() / num_times;

  for (auto &out : outputs) {
    size_t size = std::accumulate(out.shape.begin(), out.shape.end(), 1,
                                  [](int a, int b) { return a * b; });
    float *data = static_cast<float *>(out.data.data());
    for (int i = 0;
         i < std::min(sizeof(ditu_rnn_target_data) / sizeof(float), size);
         i++) {
      EXPECT_NEAR(data[i], ditu_rnn_target_data[i], 1e-3);
    }
  }
}

317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
// Turn on the IR pass supportion, run a real inference and check the result.
TEST(Analyzer, SupportIRPass) {
  FLAGS_IA_enable_ir = true;
  FLAGS_IA_enable_tensorrt_subgraph_engine = false;
  FLAGS_IA_output_storage_path = "./analysis.out";

  Argument argument(FLAGS_inference_model_dir);
  argument.model_output_store_path.reset(new std::string("./analysis.out"));

  Analyzer analyzer;
  analyzer.Run(&argument);

  // Should get the transformed model stored to ./analysis.out
  ASSERT_TRUE(PathExists("./analysis.out"));

  // Inference from this path.
  TestWord2vecPrediction("./analysis.out");
}

336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
// Directly infer with the original model.
TEST(Analyzer, DituRNN_without_analysis) {
  TestDituRNNPrediction(FLAGS_infer_ditu_rnn_model, FLAGS_infer_ditu_rnn_data,
                        10, false, false);
}

// Inference with the original model with the analysis turned on, the analysis
// module will transform the program to a data flow graph.
TEST(Analyzer, DituRNN_with_analysis) {
  LOG(INFO) << "ditu rnn with analysis";
  TestDituRNNPrediction(FLAGS_infer_ditu_rnn_model, FLAGS_infer_ditu_rnn_data,
                        10, true, false, 1);
}

// Inference with analysis and IR. The IR module will fuse some large kernels.
TEST(Analyzer, DituRNN_with_analysis_with_IR) {
  LOG(INFO) << "ditu rnn with analysis and IR fuse";
  TestDituRNNPrediction(FLAGS_infer_ditu_rnn_model, FLAGS_infer_ditu_rnn_data,
                        10, true, true, 1);
}

357 358 359
}  // namespace analysis
}  // namespace inference
}  // namespace paddle
360 361 362 363

USE_PASS(fc_fuse_pass);
USE_PASS(graph_viz_pass);
USE_PASS(infer_clean_graph_pass);