parallel.py 6.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except jin compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import six
import warnings

from paddle import compat as cpt

# deprecated module import
from paddle.fluid import core
from paddle.fluid.framework import _set_expected_place
from paddle.fluid.dygraph import parallel_helper
from paddle.fluid.dygraph.parallel import ParallelEnv

__all__ = ["init_parallel_env"]

ParallelStrategy = core.ParallelStrategy


def init_parallel_env(backend='nccl'):
    """
    Initialize parallel training environments in dynamic mode.

    Args:
        backend(str, optional): The backend to communication between multiple devices.
            Now only support ``nccl`` . Default value is ``nccl`` .

    Returns:
        None
        
    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn as nn
            import paddle.optimizer as opt
            import paddle.distributed as dist

            class LinearNet(nn.Layer):
                def __init__(self):
                    super(LinearNet, self).__init__()
                    self._linear1 = nn.Linear(10, 10)
                    self._linear2 = nn.Linear(10, 1)
                    
                def forward(self, x):
                    return self._linear2(self._linear1(x))

            def train():
                # 1. enable dynamic mode
                paddle.disable_static()
                
                # 2. initialize parallel environment
                dist.init_parallel_env()

                # 3. create data parallel layer & optimizer
                layer = LinearNet()
                dp_layer = paddle.DataParallel(layer)

                loss_fn = nn.MSELoss()
                adam = opt.Adam(
                    learning_rate=0.001, parameters=dp_layer.parameters())

                # 4. run layer
                inputs = paddle.randn([10, 10], 'float32')
                outputs = dp_layer(inputs)
                labels = paddle.randn([10, 1], 'float32')
                loss = loss_fn(outputs, labels)
                
                loss = dp_layer.scale_loss(loss)
                loss.backward()
                dp_layer.apply_collective_grads()

                adam.step()
                adam.clear_grad()

            if __name__ == '__main__':
                dist.spawn(train)
    """

    # 1. input check
    if not isinstance(backend, six.string_types):
        raise TypeError("input `backend` type error, expected type is str, "
                        "but received type is %s." % type(backend))
    if cpt.to_text(backend) != 'nccl':
        raise ValueError(
            "backend `%s` is not supported, now only supports `nccl` backend." %
            backend)

    # 2. check env
    def _check_var_exists(var_name):
        var = os.environ.get(var_name, None)
        if var is None:
            raise ValueError("paddle.distributed initialize error, "
                             "environment variable %s is needed, but not set." %
                             var_name)

    _check_var_exists("FLAGS_selected_gpus")
    _check_var_exists("PADDLE_TRAINER_ID")
    _check_var_exists("PADDLE_CURRENT_ENDPOINT")
    _check_var_exists("PADDLE_TRAINERS_NUM")
    _check_var_exists("PADDLE_TRAINER_ENDPOINTS")

    # 3. init ParallelStrategy
    strategy = ParallelStrategy()
    if cpt.to_text(backend) == 'nccl':
        if parallel_helper._is_parallel_ctx_initialized():
            warnings.warn("The parallel environment has been initialized.")
        strategy.nranks = ParallelEnv().world_size
        strategy.local_rank = ParallelEnv().rank
        strategy.trainer_endpoints = ParallelEnv().trainer_endpoints
        strategy.current_endpoint = ParallelEnv().current_endpoint
        if strategy.nranks < 2:
            return
        # NOTE(chenweihang): [ why config global place here? ]
        # the dygraph mode will be set to default mode, 
        # users will not call `dygraph.guard` or `enable_dygraph`
        # directly, if they want to switch default place,
        # they need to call a function to change default place,
        # here just set correctly place to users
        place = core.CUDAPlace(ParallelEnv().device_id)
        _set_expected_place(place)

        # init nccl context
        parallel_helper._set_parallel_ctx(
            core.NCCLParallelContext(strategy, place))
        parallel_helper._init_parallel_ctx()


def get_rank():
    """
    Returns the rank of current trainer.

    Its value is equal to the value of the environment variable ``PADDLE_TRAINER_ID`` . 
    The default value is 0.

    Returns:
        (int) The rank of current trainer.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.distributed as dist

            # execute this command in terminal: export PADDLE_TRAINER_ID=0
            print("The rank is %d" % dist.get_rank())
            # The rank is 0
    """
    return ParallelEnv().rank


def get_world_size():
    """
    The number of trainers (number of processes participating in current job).

    Its value is equal to the value of the environment variable ``PADDLE_TRAINERS_NUM`` . 
    The default value is 1.

    Returns:
        (int) The number of trainers.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.distributed as dist

            # execute this command in terminal: export PADDLE_TRAINERS_NUM=4
            print("The world_size is %d" % dist.get_world_size())
            # The world_size is 4
    """
    return ParallelEnv().world_size