zero_copy_tensor.cc 16.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15
#include "paddle/fluid/framework/data_layout_transform.h"
16 17 18
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/inference/api/paddle_inference_api.h"
W
Wilber 已提交
19
#include "paddle/fluid/inference/api/paddle_tensor.h"
N
nhzlx 已提交
20
#include "paddle/fluid/memory/memcpy.h"
21
#include "paddle/fluid/platform/enforce.h"
22
#include "paddle/fluid/platform/float16.h"
23

24
namespace paddle_infer {
25

26 27
using float16 = paddle::platform::float16;

28
void Tensor::Reshape(const std::vector<int> &shape) {
W
Wilber 已提交
29 30
  PADDLE_ENFORCE_EQ(
      name_.empty(), false,
31
      paddle::platform::errors::PreconditionNotMet(
W
Wilber 已提交
32 33 34
          "Need to SetName first, so that the corresponding tensor can "
          "be retrieved."));
  PADDLE_ENFORCE_EQ(input_or_output_, true,
35
                    paddle::platform::errors::PermissionDenied(
W
Wilber 已提交
36
                        "Can't reshape the output tensor, it is readonly"));
37
  auto *scope = static_cast<paddle::framework::Scope *>(scope_);
38
  auto *var = scope->FindVar(name_);
W
Wilber 已提交
39
  PADDLE_ENFORCE_NOT_NULL(
40
      var, paddle::platform::errors::PreconditionNotMet(
W
Wilber 已提交
41
               "No tensor called [%s] in the runtime scope", name_));
42 43
  auto *tensor = var->GetMutable<paddle::framework::LoDTensor>();
  tensor->Resize(paddle::framework::make_ddim(shape));
44 45
}

46 47 48 49
#define EAGER_GET_TENSOR    \
  if (!tensor_) {           \
    tensor_ = FindTensor(); \
  }                         \
50
  auto *tensor = static_cast<paddle::framework::LoDTensor *>(tensor_);
51

52
template <typename T>
53
T *Tensor::mutable_data(PlaceType place) {
54
  EAGER_GET_TENSOR;
55 56
  PADDLE_ENFORCE_GT(
      tensor->numel(), 0,
57 58
      paddle::platform::errors::PreconditionNotMet(
          "You should call Tensor::Reshape(const std::vector<int> "
W
Wilber 已提交
59 60
          "&shape)"
          "function before retrieving mutable_data from input tensor."));
61
  switch (static_cast<int>(place)) {
62 63
    case static_cast<int>(PlaceType::kCPU): {
      return tensor->mutable_data<T>(paddle::platform::CPUPlace());
64
    }
65 66 67 68 69
    case static_cast<int>(PlaceType::kGPU): {
      return tensor->mutable_data<T>(paddle::platform::CUDAPlace(device_));
    }
    case static_cast<int>(PlaceType::kXPU): {
      return tensor->mutable_data<T>(paddle::platform::XPUPlace(device_));
70
    }
71 72 73
    case static_cast<int>(PlaceType::kNPU): {
      return tensor->mutable_data<T>(paddle::platform::NPUPlace(device_));
    }
74
    default:
75
      PADDLE_THROW(paddle::platform::errors::Unavailable(
76 77
          "Only CPU / CUDA / XPU / NPU places is supported. The place `%d` is "
          "not supported.",
78
          static_cast<int>(place)));
79 80 81 82 83 84
      break;
  }
  return nullptr;
}

template <typename T>
85
T *Tensor::data(PlaceType *place, int *size) const {
86
  EAGER_GET_TENSOR;
87 88
  auto *res = tensor->data<T>();

89 90 91 92 93 94
  if (paddle::platform::is_cpu_place(tensor->place())) {
    *place = PlaceType::kCPU;
  } else if (paddle::platform::is_gpu_place(tensor->place())) {
    *place = PlaceType::kGPU;
  } else if (paddle::platform::is_xpu_place(tensor->place())) {
    *place = PlaceType::kXPU;
95 96
  } else if (paddle::platform::is_npu_place(tensor->place())) {
    *place = PlaceType::kNPU;
97
  } else {
98
    *place = PlaceType::kUNK;
99 100 101 102 103 104
  }

  *size = tensor->numel();
  return res;
}

105
DataType Tensor::type() const {
106 107
  EAGER_GET_TENSOR;
  auto type = tensor->type();
108 109
  if (type == paddle::framework::proto::VarType::FP32) {
    return DataType::FLOAT32;
110 111
  } else if (type == paddle::framework::proto::VarType::FP16) {
    return DataType::FLOAT16;
112 113 114 115 116 117
  } else if (type == paddle::framework::proto::VarType::INT64) {
    return DataType::INT64;
  } else if (type == paddle::framework::proto::VarType::INT32) {
    return DataType::INT32;
  } else if (type == paddle::framework::proto::VarType::UINT8) {
    return DataType::UINT8;
118 119
  } else if (type == paddle::framework::proto::VarType::INT8) {
    return DataType::INT8;
120
  }
121
  return DataType::FLOAT32;
122 123
}

S
Shang Zhizhou 已提交
124 125
PlaceType Tensor::place() const { return place_; }

N
nhzlx 已提交
126
template <typename T>
127
void Tensor::CopyFromCpu(const T *data) {
N
nhzlx 已提交
128
  EAGER_GET_TENSOR;
W
Wilber 已提交
129
  PADDLE_ENFORCE_GE(tensor->numel(), 0,
130 131
                    paddle::platform::errors::PreconditionNotMet(
                        "You should call Tensor::Reshape(const "
W
Wilber 已提交
132 133
                        "std::vector<int> &shape)"
                        "function before copying data from cpu."));
N
nhzlx 已提交
134 135
  size_t ele_size = tensor->numel() * sizeof(T);

136 137
  if (place_ == PlaceType::kCPU) {
    auto *t_data = tensor->mutable_data<T>(paddle::platform::CPUPlace());
N
nhzlx 已提交
138
    std::memcpy(static_cast<void *>(t_data), data, ele_size);
139
  } else if (place_ == PlaceType::kGPU) {
140
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
141 142 143
    paddle::platform::DeviceContextPool &pool =
        paddle::platform::DeviceContextPool::Instance();
    paddle::platform::CUDAPlace gpu_place(device_);
N
nhzlx 已提交
144
    auto *t_data = tensor->mutable_data<T>(gpu_place);
145 146
    auto *dev_ctx = static_cast<const paddle::platform::CUDADeviceContext *>(
        pool.Get(gpu_place));
N
nhzlx 已提交
147

148 149 150
    paddle::memory::Copy(gpu_place, static_cast<void *>(t_data),
                         paddle::platform::CPUPlace(), data, ele_size,
                         dev_ctx->stream());
N
nhzlx 已提交
151
#else
152 153 154
    PADDLE_THROW(paddle::platform::errors::Unavailable(
        "Can not create tensor with CUDA place because paddle is not compiled "
        "with CUDA."));
N
nhzlx 已提交
155
#endif
156
  } else if (place_ == PlaceType::kXPU) {
157
#ifdef PADDLE_WITH_XPU
158
    paddle::platform::XPUPlace xpu_place(device_);
159
    auto *t_data = tensor->mutable_data<T>(xpu_place);
160 161
    paddle::memory::Copy(xpu_place, static_cast<void *>(t_data),
                         paddle::platform::CPUPlace(), data, ele_size);
162
#else
163 164 165
    PADDLE_THROW(paddle::platform::errors::Unavailable(
        "Can not create tensor with XPU place because paddle is not compiled "
        "with XPU."));
W
Wilber 已提交
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
#endif
  } else if (place_ == PlaceType::kNPU) {
#ifdef PADDLE_WITH_ASCEND_CL
    paddle::platform::DeviceContextPool &pool =
        paddle::platform::DeviceContextPool::Instance();
    paddle::platform::NPUPlace npu_place(device_);
    auto *t_data = tensor->mutable_data<T>(npu_place);
    auto *dev_ctx = static_cast<const paddle::platform::NPUDeviceContext *>(
        pool.Get(npu_place));
    paddle::memory::Copy(npu_place, static_cast<void *>(t_data),
                         paddle::platform::CPUPlace(), data, ele_size,
                         dev_ctx->stream());
#else
    PADDLE_THROW(paddle::platform::errors::Unavailable(
        "Can not create tensor with NPU place because paddle is not compiled "
        "with NPU."));
182 183 184
#endif
  } else {
    PADDLE_THROW(paddle::platform::errors::InvalidArgument(
W
Wilber 已提交
185
        "The analysis predictor supports CPU, GPU, NPU and XPU now."));
N
nhzlx 已提交
186 187 188 189
  }
}

template <typename T>
S
Shang Zhizhou 已提交
190 191
void Tensor::CopyToCpuImpl(T *data, void *exec_stream, CallbackFunc cb,
                           void *cb_params) const {
N
nhzlx 已提交
192 193 194 195 196
  EAGER_GET_TENSOR;
  auto ele_num = tensor->numel();
  auto *t_data = tensor->data<T>();
  auto t_place = tensor->place();

197 198 199 200 201 202
  paddle::framework::Tensor out;
  auto mem_allocation = std::make_shared<paddle::memory::Allocation>(
      static_cast<void *>(data), ele_num * sizeof(T),
      paddle::platform::CPUPlace());
  out.ResetHolder(mem_allocation);

203
  if (paddle::platform::is_cpu_place(t_place)) {
204 205 206 207 208 209 210 211 212
#ifdef PADDLE_WITH_MKLDNN
    if (tensor->layout() == paddle::framework::DataLayout::kMKLDNN)
      paddle::framework::innerTransDataLayoutFromMKLDNN(
          tensor->layout(), paddle::platform::MKLDNNDeviceContext::tls()
                                .get_cur_paddle_data_layout(),
          *tensor, &out, paddle::platform::CPUPlace(), true);
    else
      std::memcpy(static_cast<void *>(data), t_data, ele_num * sizeof(T));
#else
N
nhzlx 已提交
213
    std::memcpy(static_cast<void *>(data), t_data, ele_num * sizeof(T));
214
#endif
215
  } else if (place_ == PlaceType::kGPU) {
216
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
217 218 219 220 221 222 223 224
    paddle::platform::DeviceContextPool &pool =
        paddle::platform::DeviceContextPool::Instance();
    auto gpu_place = BOOST_GET_CONST(paddle::platform::CUDAPlace, t_place);
    auto *dev_ctx = static_cast<const paddle::platform::CUDADeviceContext *>(
        pool.Get(gpu_place));
    paddle::memory::Copy(paddle::platform::CPUPlace(),
                         static_cast<void *>(data), gpu_place, t_data,
                         ele_num * sizeof(T), dev_ctx->stream());
225 226 227
#ifdef PADDLE_WITH_HIP
    hipStreamSynchronize(dev_ctx->stream());
#else
S
Shang Zhizhou 已提交
228 229 230 231 232 233 234 235 236 237
    // async, return stream
    if (nullptr != exec_stream) {
      *(static_cast<cudaStream_t *>(exec_stream)) = dev_ctx->stream();
      // async with callback
    } else if (cb) {
      cudaLaunchHostFunc(dev_ctx->stream(), cb, cb_params);
      // sync
    } else {
      cudaStreamSynchronize(dev_ctx->stream());
    }
238
#endif
N
nhzlx 已提交
239
#else
240 241 242
    PADDLE_THROW(paddle::platform::errors::Unavailable(
        "Can not create tensor with CUDA place because paddle is not compiled "
        "with CUDA."));
N
nhzlx 已提交
243
#endif
244
  } else if (place_ == PlaceType::kXPU) {
245
#ifdef PADDLE_WITH_XPU
246 247 248 249
    auto xpu_place = BOOST_GET_CONST(paddle::platform::XPUPlace, t_place);
    paddle::memory::Copy(paddle::platform::CPUPlace(),
                         static_cast<void *>(data), xpu_place, t_data,
                         ele_num * sizeof(T));
250
#else
251 252 253
    PADDLE_THROW(paddle::platform::errors::Unavailable(
        "Can not create tensor with XPU place because paddle is not compiled "
        "with XPU."));
W
Wilber 已提交
254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
#endif
  } else if (place_ == PlaceType::kNPU) {
#ifdef PADDLE_WITH_ASCEND_CL
    paddle::platform::DeviceContextPool &pool =
        paddle::platform::DeviceContextPool::Instance();
    auto npu_place = BOOST_GET_CONST(paddle::platform::NPUPlace, t_place);
    auto *dev_ctx = static_cast<const paddle::platform::NPUDeviceContext *>(
        pool.Get(npu_place));
    paddle::memory::Copy(paddle::platform::CPUPlace(),
                         static_cast<void *>(data), npu_place, t_data,
                         ele_num * sizeof(T), dev_ctx->stream());
    aclrtSynchronizeStream(dev_ctx->stream());
#else
    PADDLE_THROW(paddle::platform::errors::Unavailable(
        "Can not create tensor with NPU place because paddle is not compiled "
        "with NPU."));
270 271 272
#endif
  } else {
    PADDLE_THROW(paddle::platform::errors::InvalidArgument(
W
Wilber 已提交
273
        "The analysis predictor supports CPU, GPU, NPU and XPU now."));
N
nhzlx 已提交
274 275
  }
}
S
Shang Zhizhou 已提交
276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291

template <typename T>
void Tensor::CopyToCpu(T *data) const {
  CopyToCpuImpl<T>(data, nullptr, nullptr, nullptr);
}

template <typename T>
void Tensor::CopyToCpuAsync(T *data, void *exec_stream) const {
  CopyToCpuImpl<T>(data, exec_stream, nullptr, nullptr);
}

template <typename T>
void Tensor::CopyToCpuAsync(T *data, CallbackFunc cb, void *cb_params) const {
  CopyToCpuImpl<T>(data, nullptr, cb, cb_params);
}

292 293 294 295 296
template PD_INFER_DECL void Tensor::CopyFromCpu<float>(const float *data);
template PD_INFER_DECL void Tensor::CopyFromCpu<int64_t>(const int64_t *data);
template PD_INFER_DECL void Tensor::CopyFromCpu<int32_t>(const int32_t *data);
template PD_INFER_DECL void Tensor::CopyFromCpu<uint8_t>(const uint8_t *data);
template PD_INFER_DECL void Tensor::CopyFromCpu<int8_t>(const int8_t *data);
297
template PD_INFER_DECL void Tensor::CopyFromCpu<float16>(const float16 *data);
298

S
Shang Zhizhou 已提交
299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
template PD_INFER_DECL void Tensor::CopyToCpu<float>(float *data) const;
template PD_INFER_DECL void Tensor::CopyToCpu<int64_t>(int64_t *data) const;
template PD_INFER_DECL void Tensor::CopyToCpu<int32_t>(int32_t *data) const;
template PD_INFER_DECL void Tensor::CopyToCpu<uint8_t>(uint8_t *data) const;
template PD_INFER_DECL void Tensor::CopyToCpu<int8_t>(int8_t *data) const;
template PD_INFER_DECL void Tensor::CopyToCpu<float16>(float16 *data) const;

template PD_INFER_DECL void Tensor::CopyToCpuAsync<float>(
    float *data, void *exec_stream) const;
template PD_INFER_DECL void Tensor::CopyToCpuAsync<int64_t>(
    int64_t *data, void *exec_stream) const;
template PD_INFER_DECL void Tensor::CopyToCpuAsync<int32_t>(
    int32_t *data, void *exec_stream) const;
template PD_INFER_DECL void Tensor::CopyToCpuAsync<uint8_t>(
    uint8_t *data, void *exec_stream) const;
template PD_INFER_DECL void Tensor::CopyToCpuAsync<int8_t>(
    int8_t *data, void *exec_stream) const;
template PD_INFER_DECL void Tensor::CopyToCpuAsync<float16>(
    float16 *data, void *exec_stream) const;

template PD_INFER_DECL void Tensor::CopyToCpuAsync<float>(
    float *data, CallbackFunc cb, void *cb_params) const;
template PD_INFER_DECL void Tensor::CopyToCpuAsync<int64_t>(
    int64_t *data, CallbackFunc cb, void *cb_params) const;
template PD_INFER_DECL void Tensor::CopyToCpuAsync<int32_t>(
    int32_t *data, CallbackFunc cb, void *cb_params) const;
template PD_INFER_DECL void Tensor::CopyToCpuAsync<uint8_t>(
    uint8_t *data, CallbackFunc cb, void *cb_params) const;
template PD_INFER_DECL void Tensor::CopyToCpuAsync<int8_t>(
    int8_t *data, CallbackFunc cb, void *cb_params) const;
template PD_INFER_DECL void Tensor::CopyToCpuAsync<float16>(
    float16 *data, CallbackFunc cb, void *cb_params) const;
331

332 333 334 335 336 337 338 339 340 341
template PD_INFER_DECL float *Tensor::data<float>(PlaceType *place,
                                                  int *size) const;
template PD_INFER_DECL int64_t *Tensor::data<int64_t>(PlaceType *place,
                                                      int *size) const;
template PD_INFER_DECL int32_t *Tensor::data<int32_t>(PlaceType *place,
                                                      int *size) const;
template PD_INFER_DECL uint8_t *Tensor::data<uint8_t>(PlaceType *place,
                                                      int *size) const;
template PD_INFER_DECL int8_t *Tensor::data<int8_t>(PlaceType *place,
                                                    int *size) const;
S
Shang Zhizhou 已提交
342 343
template PD_INFER_DECL float16 *Tensor::data<float16>(PlaceType *place,
                                                      int *size) const;
344

345 346 347 348 349
template PD_INFER_DECL float *Tensor::mutable_data<float>(PlaceType place);
template PD_INFER_DECL int64_t *Tensor::mutable_data<int64_t>(PlaceType place);
template PD_INFER_DECL int32_t *Tensor::mutable_data<int32_t>(PlaceType place);
template PD_INFER_DECL uint8_t *Tensor::mutable_data<uint8_t>(PlaceType place);
template PD_INFER_DECL int8_t *Tensor::mutable_data<int8_t>(PlaceType place);
S
Shang Zhizhou 已提交
350
template PD_INFER_DECL float16 *Tensor::mutable_data<float16>(PlaceType place);
351

352 353 354 355 356 357
Tensor::Tensor(void *scope) : scope_{scope} {
  PADDLE_ENFORCE_NOT_NULL(scope_,
                          paddle::platform::errors::PreconditionNotMet(
                              "The `scope` can not be nullptr. It should be "
                              "set to the pointer of scope."));
}
358

359
void *Tensor::FindTensor() const {
W
Wilber 已提交
360 361
  PADDLE_ENFORCE_EQ(
      name_.empty(), false,
362
      paddle::platform::errors::PreconditionNotMet(
W
Wilber 已提交
363 364
          "Need to SetName first, so that the corresponding tensor can "
          "be retrieved."));
365
  auto *scope = static_cast<paddle::framework::Scope *>(scope_);
366
  auto *var = scope->FindVar(name_);
W
Wilber 已提交
367
  PADDLE_ENFORCE_NOT_NULL(
368
      var, paddle::platform::errors::PreconditionNotMet(
W
Wilber 已提交
369
               "No tensor called [%s] in the runtime scope", name_));
370
  auto *tensor = var->GetMutable<paddle::framework::LoDTensor>();
371 372 373
  return tensor;
}

374
std::vector<int> Tensor::shape() const {
375
  EAGER_GET_TENSOR;
W
Wilber 已提交
376
  PADDLE_ENFORCE_NOT_NULL(
377
      tensor_, paddle::platform::errors::PreconditionNotMet(
W
Wilber 已提交
378
                   "Not found tensor called %s in the scope", name_));
379
  return paddle::framework::vectorize<int>(tensor->dims());
380 381
}

382
void Tensor::SetLoD(const std::vector<std::vector<size_t>> &x) {
383
  EAGER_GET_TENSOR;
384
  paddle::framework::LoD lod;
385 386 387 388 389 390
  for (auto &level : x) {
    lod.emplace_back(level);
  }
  tensor->set_lod(lod);
}

391
std::vector<std::vector<size_t>> Tensor::lod() const {
392
  EAGER_GET_TENSOR;
393 394 395 396 397 398 399
  std::vector<std::vector<size_t>> res;
  for (auto &level : tensor->lod()) {
    res.emplace_back(level);
  }
  return res;
}

400 401 402 403 404 405 406 407 408 409
void Tensor::SetName(const std::string &name) { name_ = name; }

const std::string &Tensor::name() const { return name_; }

void Tensor::SetPlace(PlaceType place, int device) {
  place_ = place;
  device_ = device;
}

}  // namespace paddle_infer