sgd_op.h 4.8 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
Y
Yi Wang 已提交
16 17 18
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/selected_rows.h"
Q
Qiao Longfei 已提交
19 20 21 22

namespace paddle {
namespace operators {

C
chengduoZH 已提交
23
template <typename T>
Y
Yu Yang 已提交
24
class SGDOpKernel : public framework::OpKernel<T> {
25
 public:
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
  void Compute(const framework::ExecutionContext &ctx) const override {
    const auto *learning_rate = ctx.Input<framework::Tensor>("LearningRate");

    const auto *param_var = ctx.InputVar("Param");
    const auto *grad_var = ctx.InputVar("Grad");

    if (param_var->IsType<framework::LoDTensor>()) {
      const auto *param = ctx.Input<framework::Tensor>("Param");
      auto *param_out = ctx.Output<framework::Tensor>("ParamOut");

      // Actually, all tensors are LoDTensor except SelectedRows.
      if (grad_var->IsType<framework::LoDTensor>()) {
        param_out->mutable_data<T>(ctx.GetPlace());
        const auto *grad = ctx.Input<framework::Tensor>("Grad");

        auto p = framework::EigenVector<T>::Flatten(*param);
        auto g = framework::EigenVector<T>::Flatten(*grad);
        auto o = framework::EigenVector<T>::Flatten(*param_out);
        auto *lr = learning_rate->data<T>();

        o = p - lr[0] * g;
      } else if (grad_var->IsType<framework::SelectedRows>()) {
        // TODO(qijun): In Sparse SGD operator, in-place update is enforced.
        // This manual optimization brings difficulty to track data dependency.
        // It's better to find a more elegant solution.
        PADDLE_ENFORCE_EQ(param, param_out);
        const auto *grad = ctx.Input<framework::SelectedRows>("Grad");

        // for distributed training, a sparse var may be empty,
        // just skip updating.
        if (grad->rows().size() == 0) {
          return;
        }

        auto grad_height = grad->height();
        auto out_dims = param_out->dims();
        PADDLE_ENFORCE_EQ(grad_height, out_dims[0]);

        auto &grad_value = grad->value();
        auto &grad_rows = grad->rows();

        size_t grad_row_numel = grad_value.numel() / grad_rows.size();
        PADDLE_ENFORCE_EQ(grad_row_numel, param_out->numel() / grad_height);

        auto *grad_data = grad_value.data<T>();
        auto *out_data = param_out->data<T>();
        auto *lr = learning_rate->data<T>();
        for (size_t i = 0; i < grad_rows.size(); i++) {
          PADDLE_ENFORCE(grad_rows[i] < grad_height,
                         "Input rows index should less than height");
          for (int64_t j = 0; j < grad_row_numel; j++) {
            out_data[grad_rows[i] * grad_row_numel + j] -=
                lr[0] * grad_data[i * grad_row_numel + j];
          }
        }
      } else {
        PADDLE_THROW("Unsupported Variable Type of Grad");
      }
    } else if (param_var->IsType<framework::SelectedRows>()) {
      PADDLE_ENFORCE(grad_var->IsType<framework::SelectedRows>(),
                     "when param "
                     "is SelectedRows, gradient should also be SelectedRows");
      const auto &param = param_var->Get<framework::SelectedRows>();
      auto *param_out = ctx.Output<framework::SelectedRows>("ParamOut");
      const auto &grad = grad_var->Get<framework::SelectedRows>();
C
chengduoZH 已提交
91

92 93
      // for distributed training, a sparse var may be empty,
      // just skip updating.
94
      if (grad.rows().size() == 0) {
95 96 97
        return;
      }

98 99 100 101
      size_t param_row_width = param.value().numel() / param.rows().size();
      size_t grad_row_width = grad.value().numel() / grad.rows().size();
      PADDLE_ENFORCE_EQ(param_row_width, grad_row_width,
                        "param_row should have the same size with grad_row");
C
chengduoZH 已提交
102

103 104 105 106 107
      const auto *lr = learning_rate->data<T>();
      const auto *grad_data = grad.value().data<T>();
      auto *out_data = param_out->mutable_value()->data<T>();
      for (size_t i = 0; i < grad.rows().size(); i++) {
        PADDLE_ENFORCE(grad.rows()[i] < grad.height(),
108
                       "Input rows index should less than height");
Q
qiaolongfei 已提交
109
        int64_t id_index = param.index(grad.rows()[i]);
110 111 112
        for (int64_t j = 0; j < grad_row_width; j++) {
          out_data[id_index * grad_row_width + j] -=
              lr[0] * grad_data[i * grad_row_width + j];
C
chengduoZH 已提交
113 114
        }
      }
Q
qijun 已提交
115
    } else {
116
      PADDLE_THROW("Unsupported Variable Type of Parameter");
Q
qijun 已提交
117
    }
Q
Qiao Longfei 已提交
118 119 120 121
  }
};
}  // namespace operators
}  // namespace paddle