estimate_cost.py 23.5 KB
Newer Older
1
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License

15 16 17 18 19 20 21 22 23 24
from collections import OrderedDict
from functools import reduce

import paddle
from paddle.distributed.fleet.meta_optimizers.common import OpRole

from .base_cost import Cost
from ..operators.common import get_distributed_operator_impl_container
from ..dist_tensor import DistributedTensor

25 26

class CostEstimator:
27
    _sepical_op_type = ["fused_attention", "fused_feedforward"]
28

29 30 31
    def __init__(
        self, program, cluster, mode="modeling", rank=None, loop_count=10
    ):
32 33 34 35
        self._program = program
        self._cluster = cluster
        self._check_mode(mode)
        self._mode = mode
36 37 38 39
        self._rank = rank if rank is not None else paddle.distributed.get_rank()
        self._loop_count = loop_count
        self._global_cost = Cost()
        self._local_cost_mapping = {}
40 41
        self._detailed_cost = (
            OrderedDict()
42 43 44
        )  # {`op_id`: {"reshard": [], "dist_op": [], "local_cost": local_cost}}}
        self._bubble_time_mapping = {}
        self._ordered_ops = []
45 46
        self.max_memories = {}
        self.max_memory = None
47 48 49 50 51 52 53 54

    @property
    def loop_count(self):
        return self._loop_count

    @property
    def detailed_cost(self):
        return self._detailed_cost
55 56 57 58 59

    @property
    def program(self):
        return self._program

60 61 62 63
    @property
    def rank(self):
        return self._rank

64 65 66 67 68 69 70 71 72 73 74 75 76 77
    @property
    def dist_context(self):
        return self._dist_context

    @property
    def cluster(self):
        return self._cluster

    @property
    def mode(self):
        return self._mode

    @property
    def global_cost(self):
78 79 80 81 82 83 84 85 86 87 88 89
        max_time = 0
        memory = 0
        flops = 0
        for rank in self._local_cost_mapping:
            cost = self._local_cost_mapping[rank]
            if cost.time > max_time:
                max_time = cost.time
            memory += cost.memory
            flops += cost.flops
        self._global_cost.time = max_time
        self._global_cost.memory = memory
        self._global_cost.flops = flops
90 91
        return self._global_cost

92 93 94 95
    def local_cost(self, rank=None):
        rank = self.rank if rank is None else rank
        if rank not in self._local_cost_mapping:
            self._local_cost_mapping[rank] = Cost()
96

97
        return self._local_cost_mapping[rank]
98

99 100 101
    def local_bubble_time(self, rank=None):
        rank = self.rank if rank is None else rank
        return self._bubble_time_mapping[rank]
102 103 104 105

    def _check_mode(self, mode):
        if mode not in ["modeling", "profiling"]:
            raise ValueError(
106 107
                "Just support modeling and profiling, but got {}".format(mode)
            )
108 109 110 111 112 113 114 115 116

    def _is_special_var_name(self, var_name):
        special_var_name = ["lod_tensor_blocking_queue_0"]
        if var_name in special_var_name:
            return True
        return False

    def _estimate_core(self, dist_context, resharder, block):
        from ..reshard import get_var_with_recursion
117

118 119 120 121 122 123 124 125 126
        ops = block.ops
        loop_count = None
        if block.desc.id != self.program.global_block().desc.id:
            loop_count = self.loop_count
        else:
            loop_count = 1
        for i in range(loop_count):
            for op in ops:
                self._detailed_cost[op.desc.id()] = OrderedDict()
127
                # If in the while sub block, the detail of cost is the last cost
128 129 130 131 132 133
                detail = self._detailed_cost[op.desc.id()]
                detail["reshard_cost"] = OrderedDict()  #
                detail["dist_op_cost"] = []
                if int(op.attr('op_role')) == int(OpRole.Optimize):
                    continue
                if op.type in [
134 135 136
                    "create_py_reader",
                    "create_double_buffer_reader",
                    "read",
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
                ]:
                    continue

                # NOTE: It does not support nested loop and just supports while op when op has sub block now.
                if op.type == "while":
                    while_block = self.program.blocks[op.attr("sub_block").id]
                    self._estimate_core(dist_context, resharder, while_block)
                    continue

                for var_name in op.input_arg_names:
                    if self._is_special_var_name(var_name):
                        continue
                    var = get_var_with_recursion(var_name, block, self.program)
                    reshard_cost = resharder.get_cost(op, var, self.cluster)

152
                    # Calc reshard cost
153 154 155 156 157 158
                    if reshard_cost is not None:
                        detail["reshard_cost"][var_name] = reshard_cost

                        comm_costs = reshard_cost[0]
                        local_comp_cost = reshard_cost[1]
                        for comm_cost in comm_costs:
159 160
                            # Time is cumulative in global cost and local cost, but memory and flops just are cumulative in global cost.
                            # Comm sync
161 162 163 164 165 166 167 168 169 170 171 172 173 174
                            for item in comm_cost:
                                group_ranks, cost = item
                                max_time = None
                                cost_time = {}
                                for rank in group_ranks:
                                    rank_cost = self.local_cost(rank)
                                    cost_time[rank] = rank_cost.time
                                    if max_time is None:
                                        max_time = rank_cost.time
                                    else:
                                        if max_time < rank_cost.time:
                                            max_time = rank_cost.time

                                for rank in group_ranks:
175 176 177
                                    self.local_cost(rank).time = (
                                        max_time + cost.time
                                    )
178 179 180 181 182

                                    if rank not in self._bubble_time_mapping:
                                        self._bubble_time_mapping[rank] = 0

                                    self._bubble_time_mapping[rank] += (
183 184
                                        max_time - cost_time[rank]
                                    )
185 186 187 188 189

                        for rank in local_comp_cost:
                            for comp_cost in local_comp_cost[rank]:
                                self.local_cost(rank).time += comp_cost.time

190
                # Calc dist op cost
191 192 193 194 195
                dist_op = dist_context.get_dist_op_for_program(op)
                op_dist_attr = dist_op.dist_attr
                processes = op_dist_attr.process_mesh.processes

                container = get_distributed_operator_impl_container(
196 197
                    op_dist_attr.impl_type
                )
198 199
                dist_impl = container.impls[op_dist_attr.impl_idx]

200 201 202
                dist_op_cost = dist_impl.calc_cost(
                    op.attr('op_role'), dist_op, dist_context, self.cluster
                )
203 204 205
                detail["dist_op_cost"] = dist_op_cost

                if dist_op_cost is None:
206 207 208
                    assert (
                        dist_op.serial_op.type in CostEstimator._sepical_op_type
                    )
209 210 211
                    continue
                for item in dist_op_cost:
                    if isinstance(item, list):
212
                        # Comm sync
213 214 215 216 217 218 219 220 221 222 223 224 225
                        for comm_op_cost in item:
                            max_time = None
                            cost_time = {}
                            group_ranks = comm_op_cost.group_ranks
                            for rank in comm_op_cost.group_ranks:
                                rank_cost = self.local_cost(rank)
                                cost_time[rank] = rank_cost.time
                                if max_time is None:
                                    max_time = rank_cost.time
                                else:
                                    if max_time < rank_cost.time:
                                        max_time = rank_cost.time
                            for rank in group_ranks:
226 227 228
                                self.local_cost(rank).time = (
                                    max_time + comm_op_cost.time
                                )
229 230 231
                                if rank not in self._bubble_time_mapping:
                                    self._bubble_time_mapping[rank] = 0
                                self._bubble_time_mapping[rank] += (
232 233
                                    max_time - cost_time[rank]
                                )
234
                    elif isinstance(item, dict):
235
                        # Op just one
236
                        for rank in processes:
237
                            # DP+PP+MP
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
                            if rank not in item:
                                continue
                            self.local_cost(rank).time += item[rank].time

    def prepare(self):
        self._global_cost = Cost()
        self._local_cost_mapping = {}
        self._detailed_cost = OrderedDict()
        self._bubble_time_mapping = {}

    def _calculate_bytes(self, sizes, dtype):
        if sizes:
            total_count = reduce(lambda x, y: x * y, sizes)
        else:
            total_count = 0

        if dtype == paddle.float64 or dtype == paddle.int64:
            dtype_factor = 8
        elif dtype == paddle.float32 or dtype == paddle.int32:
            dtype_factor = 4
258 259 260 261 262
        elif (
            dtype == paddle.float16
            or dtype == paddle.bfloat16
            or dtype == paddle.int16
        ):
263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
            dtype_factor = 2
        elif dtype == paddle.int8 or dtype == paddle.uint8:
            dtype_factor = 1
        else:
            dtype_factor = 8

        memory = total_count * dtype_factor
        return memory

    def _estimate_max_memory_by_dist_op(self, dist_context):
        # This estimation will be improved, now reshard and inplace are not considered.
        # Persist var is not free.
        def _convert_pm_and_dm_to_str(process_mesh, dims_mapping):
            processes = ",".join([str(x) for x in process_mesh.processes])
            topology = ",".join([str(x) for x in process_mesh.topology])
            dims_mapping = ",".join([str(x) for x in dims_mapping])
            result = processes + topology + dims_mapping
            return result

        memories = {}
283
        self.max_memories = {}
284 285 286
        var_info = (
            {}
        )  # var_name: [[process_mesh, dims_mapping], [id]], [[process_mesh, dims_mapping], [id]]}
287 288 289 290 291 292 293

        for block in self.program.blocks:
            for op in block.ops:
                self._ordered_ops.append([op.desc.id(), op])
        self._ordered_ops.sort(key=lambda x: x[0])

        for op_id, op in self._ordered_ops:
294
            if op.type in [
295 296 297
                "create_py_reader",
                "create_double_buffer_reader",
                "read",
298 299
            ]:
                continue
300 301 302 303
            dist_op = dist_context.get_dist_op_for_program(op)
            process_mesh = dist_op.dist_attr.process_mesh
            for var_name in op.input_arg_names:
                input_dims_mapping = dist_op.dist_attr.get_input_dims_mapping(
304 305
                    var_name
                )
306 307
                if var_name not in var_info:
                    var_info[var_name] = {}
308 309 310
                key = _convert_pm_and_dm_to_str(
                    process_mesh, input_dims_mapping
                )
311 312
                if key not in var_info[var_name]:
                    var_info[var_name][key] = {}
313
                # It is even partition now
314 315 316 317 318
                if "memory" not in var_info[var_name][key]:
                    var = dist_op.get_serial_input(var_name)
                    global_sizes = var.shape
                    dtype = var.dtype
                    sizes = DistributedTensor.get_local_sizes(
319 320 321 322 323
                        global_sizes,
                        input_dims_mapping,
                        process_mesh.topology,
                        process_mesh.processes,
                    )
324
                    var_info[var_name][key]["memory"] = self._calculate_bytes(
325 326
                        sizes, dtype
                    )
327 328 329 330 331 332
                if "position" not in var_info[var_name][key]:
                    var_info[var_name][key]["position"] = []
                var_info[var_name][key]["position"].append(op_id)

            for var_name in op.output_arg_names:
                output_dims_mapping = dist_op.dist_attr.get_output_dims_mapping(
333 334
                    var_name
                )
335 336
                if var_name not in var_info:
                    var_info[var_name] = {}
337 338 339
                key = _convert_pm_and_dm_to_str(
                    process_mesh, output_dims_mapping
                )
340 341 342 343 344 345 346
                if key not in var_info[var_name]:
                    var_info[var_name][key] = {}
                if "memory" not in var_info[var_name][key]:
                    var = dist_op.get_serial_output(var_name)
                    global_sizes = var.shape
                    dtype = var.dtype
                    sizes = DistributedTensor.get_local_sizes(
347 348 349 350 351
                        global_sizes,
                        output_dims_mapping,
                        process_mesh.topology,
                        process_mesh.processes,
                    )
352
                    var_info[var_name][key]["memory"] = self._calculate_bytes(
353 354
                        sizes, dtype
                    )
355 356 357 358 359 360
                if "position" not in var_info[var_name][key]:
                    var_info[var_name][key]["position"] = []
                var_info[var_name][key]["position"].append(op_id)

        has_used_vars = set()
        for op_id, op in self._ordered_ops:
361
            if op.type in [
362 363 364
                "create_py_reader",
                "create_double_buffer_reader",
                "read",
365 366
            ]:
                continue
367 368 369 370 371 372
            can_free_memories = {}
            can_free_vars = set()
            dist_op = dist_context.get_dist_op_for_program(op)
            process_mesh = dist_op.dist_attr.process_mesh
            for var_name in op.input_arg_names:
                input_dims_mapping = dist_op.dist_attr.get_input_dims_mapping(
373 374 375 376 377
                    var_name
                )
                key = _convert_pm_and_dm_to_str(
                    process_mesh, input_dims_mapping
                )
378 379
                has_used_var = var_name + key
                var = dist_op.get_serial_input(var_name)
380
                # Not used
381 382 383 384 385 386
                if var_name + key not in has_used_vars:
                    has_used_vars.add(has_used_var)
                    for process in process_mesh.processes:
                        if process not in memories:
                            memories[process] = 0
                        memories[process] += var_info[var_name][key]["memory"]
387
                # Used
388 389 390 391 392 393 394 395 396
                else:
                    if op_id == var_info[var_name][key]["position"][-1]:
                        if has_used_var not in can_free_vars:
                            can_free_vars.add(has_used_var)
                            if not var.persistable:
                                for process in process_mesh.processes:
                                    if process not in can_free_memories:
                                        can_free_memories[process] = 0
                                    can_free_memories[process] += var_info[
397 398
                                        var_name
                                    ][key]["memory"]
399 400 401

            for var_name in op.output_arg_names:
                output_dims_mapping = dist_op.dist_attr.get_output_dims_mapping(
402 403 404 405 406
                    var_name
                )
                key = _convert_pm_and_dm_to_str(
                    process_mesh, output_dims_mapping
                )
407 408
                has_used_var = var_name + key
                var = dist_op.get_serial_output(var_name)
409
                # Not used
410 411 412 413 414 415
                if var_name + key not in has_used_vars:
                    has_used_vars.add(has_used_var)
                    for process in process_mesh.processes:
                        if process not in memories:
                            memories[process] = 0
                        memories[process] += var_info[var_name][key]["memory"]
416
                # Used
417 418 419 420 421 422 423 424 425
                else:
                    if op_id == var_info[var_name][key]["position"][-1]:
                        if has_used_var not in can_free_vars:
                            can_free_vars.add(has_used_var)
                            if not var.persistable:
                                for process in process_mesh.processes:
                                    if process not in can_free_memories:
                                        can_free_memories[process] = 0
                                    can_free_memories[process] += var_info[
426 427
                                        var_name
                                    ][key]["memory"]
428

429
            # Calc peak memory
430
            for process in memories:
431 432
                if process not in self.max_memories:
                    self.max_memories[process] = memories[process]
433
                else:
434 435
                    if memories[process] > self.max_memories[process]:
                        self.max_memories[process] = memories[process]
436

437
            # Free memory
438 439 440 441 442
            for process in can_free_memories:
                if process in memories:
                    memories[process] -= can_free_memories[process]

        # Calculate the max memory in all ranks
443 444
        max_memory = max(self.max_memories.values())
        self.max_memory = max_memory
445 446 447 448 449 450

        return max_memory

    def estimate(self, dist_context, resharder=None):
        self.prepare()
        from ..reshard import Resharder
451 452 453 454 455 456

        resharder = (
            Resharder(self.program, None, self.rank, dist_context, [])
            if resharder is None
            else resharder
        )
457 458 459 460 461

        block = self.program.global_block()
        self._estimate_core(dist_context, resharder, block)

        return self.global_cost
462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487

    def _print_tag(self, max_len, length):
        tag = "+" + "-" * max_len
        for i in range(length):
            print(tag, end="")
            if i == length - 1:
                print("+")

    def _print_vals(self, vals, max_len):
        for idx, val in enumerate(vals):
            s = "|" + str(val).center(max_len)
            print(s, end="")
            if idx == len(vals) - 1:
                print("|")

    def _pretty_print_memory_cost(self):
        """Print memory of every rank prettily."""
        if not self.max_memories or not self.max_memory:
            raise ValueError("Please calculate memory cost before print.")

        # Padding automatically
        max_len = 0
        header = ["Rank", "Memory(MiB)"]
        memories = [
            int(item // 1e6) for item in list(self.max_memories.values())
        ]
488
        for memory in memories + header:
489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517
            if len(str(memory)) > max_len:
                max_len = len(str(memory))
        max_len += 4  # for pretty print of center

        # Print tag
        self._print_tag(max_len, len(header))

        # Print header
        self._print_vals(header, max_len)

        # Print tag
        self._print_tag(max_len, len(header))

        # Print rank and its memory
        for i in range(len(self.max_memories)):
            memory = memories[i]
            vals = [i, memory]
            self._print_vals(vals, max_len)
            self._print_tag(max_len, len(header))

    def _pretty_print_global(self):
        """Print global execution time and max memory prettily."""
        if not self.max_memories or not self.max_memory:
            raise ValueError("Please calculate cost before print.")

        # Padding automatically
        max_len = 0
        header = ["Execution Time(ms)", "Max Memory(MiB)"]
        vals = [round(self.global_cost.time, 3), int(self.max_memory // 1e6)]
518
        for memory in vals + header:
519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547
            if len(str(memory)) > max_len:
                max_len = len(str(memory))
        max_len += 4  # for pretty print of center

        # Print tag
        self._print_tag(max_len, len(header))

        # Print header
        self._print_vals(header, max_len)

        # Print tag
        self._print_tag(max_len, len(header))

        # Print exec time and max memory
        self._print_vals(vals, max_len)

        # Print tag
        self._print_tag(max_len, len(header))

    def pretty_print_cost(self):
        """Print cost prettily."""
        print("The global execution time and max memory are as follows:")
        self._pretty_print_global()
        print("The memory of every rank is as follows:")
        self._pretty_print_memory_cost()


def get_cost_from_engine(engine, mode):
    from ..utils import to_list
548
    import copy
549

550
    # Construct cost estimator by original main program
551
    serial_main_prog = (
552 553
        engine._fwd_main_progs[mode].clone()
        if mode in engine._fwd_main_progs
554 555
        else engine._orig_main_prog.clone()
    )
556

557 558 559 560 561 562 563 564 565 566 567 568
    serial_startup_prog = (
        engine._serial_startup_progs[mode].clone()
        if mode in engine._serial_startup_progs
        else engine._orig_startup_prog.clone()
    )
    losses = (
        to_list(engine._loss)
        if (
            not isinstance(engine._loss, paddle.nn.Layer)
            and not callable(engine._loss)
        )
        else engine._losses
569
    )
570 571 572
    serial_optimizer = copy.deepcopy(engine._orig_optimizer)
    if mode in engine._fwd_dist_contexts:
        dist_context = copy.deepcopy(engine._fwd_dist_contexts[mode])
573 574
    else:
        from ..dist_context import DistributedContext
575 576 577 578

        dist_context = DistributedContext(
            serial_main_prog,
            serial_startup_prog,
579
            serial_optimizer,
580 581 582 583 584 585
            losses,
            {},
            {"loss": losses},
            engine._cluster,
            engine._strategy,
        )
586 587 588 589 590 591 592
    from ..completion import Completer

    completer = Completer(dist_context)
    completer.complete_forward_annotation()
    dist_context.block_state.parse_forward_blocks(
        dist_context.serial_main_program
    )
593 594 595 596 597

    if mode == "eval" or mode == "predict":
        cost_estimator = CostEstimator(serial_main_prog, engine._cluster)
    elif mode == "train":
        from ..parallelizer_v2 import Parallelizer
598

599 600 601 602 603
        # Get serial main program with backward
        parallelizer = Parallelizer(mode, completer, dist_context)
        # Generate backward
        loss_name = dist_context.serial_loss.name
        serial_loss = serial_main_prog.global_block()._var_recursive(loss_name)
604 605 606
        params_grads = parallelizer._generate_backward(
            serial_main_prog, serial_startup_prog, serial_loss
        )
607 608 609

        # Generate optimizer
        optimizer_ops = parallelizer._generate_optimizer(
610 611 612 613 614
            serial_main_prog,
            serial_startup_prog,
            serial_optimizer,
            params_grads,
        )
615 616 617 618 619 620 621 622 623 624
        cost_estimator = CostEstimator(serial_main_prog, engine._cluster)

    # Estimate global_cost and  max memory
    global_cost = cost_estimator.estimate(dist_context)
    max_memory = cost_estimator._estimate_max_memory_by_dist_op(dist_context)

    # Print the cost
    cost_estimator.pretty_print_cost()

    return global_cost, max_memory