test_Expand.cpp 4.3 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <gtest/gtest.h>
#include <string>
#include <vector>

#include "LayerGradUtil.h"
#include "paddle/testing/TestUtil.h"

using namespace paddle;  // NOLINT
using namespace std;     // NOLINT

// Do one forward pass of expand layer and check to see if its output
// matches the given result.(Test onlyCPU currently.)
void doOneExpandTest(string trans_type,
                     bool hasSubseq,
                     bool useGpu,
                     Argument& input1,
                     Argument& input2,
                     Argument& result) {
  FLAGS_use_gpu = false;
  // Setting up the expand layer
  TestConfig config;
  config.layerConfig.set_type("expand");

  auto inputType1 =
      trans_type == "non-seq" ? INPUT_DENSE_DIM_DATA : INPUT_SEQUENCE_DATA;
  config.inputDefs.push_back({inputType1, "layer0", 1, 0});
  auto inputType2 =
      hasSubseq ? INPUT_HASSUB_SEQUENCE_DATA : INPUT_SEQUENCE_DATA;

  config.inputDefs.push_back({inputType2, "layer1", 1, 0});
  config.layerConfig.add_inputs();
  config.layerConfig.add_inputs();
  config.layerConfig.set_trans_type(trans_type);

  // data layer initialize
  std::vector<DataLayerPtr> dataLayers;
  LayerMap layerMap;
  vector<Argument> datas;
  initDataLayer(
      config, &dataLayers, &datas, &layerMap, "expand", 1, false, useGpu);
  dataLayers[0]->getOutput() = input1;
  dataLayers[1]->getOutput() = input2;

  // test layer initialize
  std::vector<ParameterPtr> parameters;
  LayerPtr expandLayer;
  initTestLayer(config, &layerMap, &parameters, &expandLayer);
  expandLayer->forward(PASS_GC);
  checkMatrixEqual(expandLayer->getOutputValue(), result.value);
}

TEST(Layer, ExpandLayerFwd) {
  bool useGpu = false;

  // Assume batch_size =3 in all cases.

  // CPU case 1. non-seq expand to seq
  // input1 = 1,2,3
  // input2 = [4,5],[6],[7,8,9]
  // result = [1,1],[2],[3,3,3]
  Argument input1, input2, result;
  input1.value = Matrix::create(3, 1, false, useGpu);
  real input1Data[] = {1, 2, 3};
  input1.value->setData(input1Data);

  input2.value = Matrix::create(6, 1, false, useGpu);
  real input2Data[] = {4, 5, 6, 7, 8, 9};
  input2.value->setData(input2Data);
  input2.sequenceStartPositions = ICpuGpuVector::create(4, useGpu);
  int input2Seq[] = {0, 2, 3, 6};
  input2.sequenceStartPositions->copyFrom(input2Seq, 4, useGpu);

  result.value = Matrix::create(6, 1, false, useGpu);
  real resultData[] = {1, 1, 2, 3, 3, 3};
  result.value->setData(resultData);

  doOneExpandTest("non-seq", false, useGpu, input1, input2, result);

  // CPU case 2. non-seq expand to sub-seq
L
Luo Tao 已提交
94 95
  // NOTE: input1.batch_size == input2.sequencelength in this case.
  // i.e, input1 expands by input2.sequence
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
  // input1 = 1,2,3
  // input2 = [[4,5]],[[6]],[[7],[8,9]]
  // result = [[1,1]],[[2]],[[3],[3,3]]
  input2.subSequenceStartPositions = ICpuGpuVector::create(5, useGpu);
  int input2SubSeq[] = {0, 2, 3, 4, 6};
  input2.subSequenceStartPositions->copyFrom(input2SubSeq, 5, useGpu);

  doOneExpandTest("non-seq", true, useGpu, input1, input2, result);

  // CPU case 3. seq expand to sub-seq
  // input1 = [1,2],[3],[4]
  // input2 = [[4,5]],[[6]],[[7],[8,9]]
  // result = [[1,1]],[[2]],[[3],[4,4]]
  Matrix::resizeOrCreate(input1.value, 4, 1, false, useGpu);
  real input1Data_case3[] = {1, 2, 3, 4};
  input1.value->setData(input1Data_case3);

  input1.sequenceStartPositions = ICpuGpuVector::create(4, useGpu);
  int input1Seq[] = {0, 2, 3, 4};
  input1.sequenceStartPositions->copyFrom(input1Seq, 4, useGpu);

  real resultData_case3[] = {1, 1, 2, 3, 4, 4};
  result.value->setData(resultData_case3);

  doOneExpandTest("seq", true, useGpu, input1, input2, result);
}

int main(int argc, char** argv) {
  testing::InitGoogleTest(&argc, argv);
  initMain(argc, argv);
  return RUN_ALL_TESTS();
}