Tester.cpp 12.5 KB
Newer Older
Z
zhangjinchao01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "Tester.h"

#include <fenv.h>
#include <stdio.h>

#include <iomanip>
Y
Yu Yang 已提交
21
#include <iostream>
Z
zhangjinchao01 已提交
22
#include <limits>
Y
Yu Yang 已提交
23
#include <sstream>
Z
zhangjinchao01 已提交
24 25 26

#include <google/protobuf/text_format.h>

Y
Yu Yang 已提交
27
#include "paddle/utils/GlobalConstants.h"
Z
zhangjinchao01 已提交
28 29 30 31
#include "paddle/utils/PythonUtil.h"
#include "paddle/utils/Stat.h"
#include "paddle/utils/Util.h"

Y
Yu Yang 已提交
32 33
#include "TesterConfig.h"
#include "paddle/gserver/gradientmachines/GradientMachineMode.h"
Z
zhangjinchao01 已提交
34 35 36 37 38
#include "paddle/gserver/gradientmachines/NeuralNetwork.h"
#include "paddle/gserver/layers/ValidationLayer.h"

namespace paddle {

39 40 41 42 43 44 45 46 47 48 49
Tester::Tester(const std::shared_ptr<TrainerConfigHelper>& config,
               std::unique_ptr<TesterConfig>&& intconfig,
               const GradientMachinePtr& gradientMachine,
               const std::shared_ptr<ParameterUpdater>& parameterUpdater,
               std::shared_ptr<DataProvider> testDataProvider)
    : config_(config),
      intconfig_(std::move(intconfig)),
      gradientMachine_(gradientMachine),
      parameterUpdater_(parameterUpdater),
      testDataProvider_(testDataProvider) {
  testEvaluator_.reset(gradientMachine_->makeEvaluator());
Z
zhangjinchao01 已提交
50 51 52 53 54
  if (intconfig_->distributeTest) {
    testParameterClient_.reset(new ParameterClient2(true));
  }

  if (testParameterClient_) {
55
    testParameterClient_->init(gradientMachine_->getParameters());
Z
zhangjinchao01 已提交
56 57 58
  }

  std::unique_ptr<ParameterUtilConfig> paramConfig(
59 60 61 62
      new ParameterUtilConfig(intconfig_->saveOnlyOne,
                              intconfig_->savingPeriod,
                              intconfig_->loadsaveParametersInPserver,
                              intconfig_->config));
Z
zhangjinchao01 已提交
63 64

  paramUtil_.reset(new ParameterUtil(
65
      config_, std::move(paramConfig), gradientMachine_, parameterUpdater_));
Z
zhangjinchao01 已提交
66 67
}

E
emailweixu 已提交
68
void Tester::startTestPeriod() {
Y
Yu Yang 已提交
69
  testDataProvider_->reset();
E
emailweixu 已提交
70 71 72 73 74 75 76 77 78 79 80
  testEvaluator_->start();
  testContext_.cost = 0;
  testContext_.numSamples = 0;

  parameterUpdater_->apply();
  if (intconfig_->prevBatchState) {
    gradientMachine_->getState(*intconfig_->trainState);
    gradientMachine_->setState(*intconfig_->testState);
  }
}

81 82 83 84
void Tester::testOneDataBatch(const DataBatch& dataBatch,
                              std::vector<Argument>* outArgs) {
  testContext_.cost +=
      forwardOneBatch(dataBatch, testEvaluator_.get(), outArgs);
E
emailweixu 已提交
85 86 87
  testContext_.numSamples += dataBatch.getSize();
}

W
wangyanfei01 已提交
88
void Tester::testOnePeriod() {
Z
zhangjinchao01 已提交
89 90
  DataBatch dataBatch;
  int64_t batchSize = config_->getOptConfig().batch_size();
E
emailweixu 已提交
91 92
  std::vector<Argument> outArgs;
  startTestPeriod();
Y
Yu Yang 已提交
93
  while (testDataProvider_->getNextBatch(batchSize, &dataBatch) != 0) {
E
emailweixu 已提交
94
    testOneDataBatch(dataBatch, &outArgs);
Z
zhangjinchao01 已提交
95
  }
Y
Yu Yang 已提交
96
  finishTestPeriod();
E
emailweixu 已提交
97 98 99
}

void Tester::finishTestPeriod() {
Y
Yu Yang 已提交
100 101 102
  if (intconfig_->prevBatchState) {
    gradientMachine_->resetState();
  }
Z
zhangjinchao01 已提交
103
  testEvaluator_->finish();
E
emailweixu 已提交
104 105 106 107 108
  CHECK_GT(testContext_.numSamples, 0)
      << "There is no samples in your test batch. Possibly "
         "wrong implementation of DataProvidor.reset()";
  LOG(INFO) << " Test samples=" << testContext_.numSamples
            << " cost=" << testContext_.cost / testContext_.numSamples
Z
zhangjinchao01 已提交
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
            << " Eval: " << *testEvaluator_;
  parameterUpdater_->restore();
  if (intconfig_->prevBatchState) {
    gradientMachine_->getState(*intconfig_->testState);
    gradientMachine_->setState(*intconfig_->trainState);
  }
}

int64_t Tester::testOneBatchById(int64_t batchId) {
  DataBatch dataBatch;
  int32_t batchSize = config_->getOptConfig().batch_size();

  testDataProvider_->getNextBatch(batchSize, &dataBatch);

  int64_t actualBatchSize = dataBatch.getSize();
  if (actualBatchSize == 0) {
    return 0;
  }

E
emailweixu 已提交
128 129
  std::vector<Argument> outArgs;

Z
zhangjinchao01 已提交
130 131
  stats_ += std::pair<int64_t, real>{
      actualBatchSize,
E
emailweixu 已提交
132
      forwardOneBatch(dataBatch, testEvaluator_.get(), &outArgs)};
Z
zhangjinchao01 已提交
133 134 135 136 137 138 139 140

  if (((batchId + 1) % intconfig_->logPeriod) == 0) {
    LOG(INFO) << " Batch=" << batchId + 1 << " " << stats_.getStats(false);
  }

  return actualBatchSize;
}

141 142
real Tester::forwardOneBatch(const DataBatch& dataBatch,
                             Evaluator* evaluator,
E
emailweixu 已提交
143 144
                             std::vector<Argument>* pOutArgs) {
  auto& outArgs = *pOutArgs;
Z
zhangjinchao01 已提交
145 146 147 148 149 150 151 152 153 154 155 156
  const std::vector<Argument>& inArgs = dataBatch.getStreams();
  if (intconfig_->loadsaveParametersInPserver) {
    REGISTER_TIMER("prefetch");
    gradientMachine_->prefetch(inArgs);
    parameterUpdater_->getParametersRemote(false /*full parameter*/,
                                           true /*after apply*/);
  }

  gradientMachine_->forward(inArgs, &outArgs, PASS_TEST);

  // write features if set this flag and outArgs is not empty
  std::string featFile = intconfig_->featFile;
E
emailweixu 已提交
157
  if (!featFile.empty() && outArgs.empty()) {
Z
zhangjinchao01 已提交
158 159 160 161 162
    size_t numOutputs = outArgs.size();
    std::vector<MatrixPtr> featMatrices;
    featMatrices.resize(numOutputs);
    for (size_t i = 0; i < numOutputs; ++i) {
      featMatrices[i] = Matrix::create(outArgs[i].value->getHeight(),
163 164
                                       outArgs[i].value->getWidth(),
                                       false,
Z
zhangjinchao01 已提交
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
                                       false);  // CPU data buffer
      featMatrices[i]->copyFrom(*(outArgs[i].value), HPPL_STREAM_DEFAULT);
    }
    hl_stream_synchronize(HPPL_STREAM_DEFAULT);
    FILE* fp = fopen(featFile.c_str(), "ab+");
    PCHECK(!ferror(fp)) << "Fail to open " << featFile;

    size_t sampleNum = featMatrices[0]->getHeight();
    for (size_t i = 0; i < sampleNum; ++i) {
      for (size_t j = 0; j < numOutputs; ++j) {
        size_t dim = featMatrices[j]->getWidth();
        fwrite(featMatrices[j]->getData() + i * dim, sizeof(real), dim, fp);
      }
    }
    fclose(fp);
  }
  if (evaluator) {
    gradientMachine_->eval(evaluator);
  }

  // Save the output layers if predict_output_dir is not empty
  std::string predictOutputDir = intconfig_->predictOutputDir;
  if (!predictOutputDir.empty() && !outArgs.empty()) {
    CHECK(intconfig_->testing) << "Only valid in test mode";
    if (!os_.is_open()) {
      // TODO(yuyang18): Refactor these lines.
      constexpr int kBufLen = 100;
      char buf[kBufLen];
      snprintf(buf, kBufLen, "rank-%05d", intconfig_->trainerId);
      mkDir(predictOutputDir.c_str());
      std::string filename = path::join(predictOutputDir, buf);
      os_.open(filename, std::ofstream::trunc);
      CHECK(os_.is_open()) << "Failed to open file " << filename;
    }
    printOutput(outArgs, os_);
    return 0.0;  // In this case, there is no meaning to calculate cost
  }

  return Argument::sumCosts(outArgs);
}

void Tester::testOnePassBatch(int passId) {
  stats_.reset();
  const std::vector<Argument> inArgs;
  gradientMachine_->forward(inArgs, nullptr, PASS_TEST);
210 211
  int64_t num;
  real cost;
Z
zhangjinchao01 已提交
212
  gradientMachine_->getStats(cost, num);
213
  stats_ += std::pair<int64_t, real>{num, cost};
Z
zhangjinchao01 已提交
214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
  gradientMachine_->onPassEnd();

  LOG(INFO) << " Pass=" << passId << " " << stats_.getStats(false);
}

void Tester::testOnePass(int passId) {
  stats_.reset();
  int64_t batchId = 0;
  int num = 0;
  if (intconfig_->prevBatchState) {
    gradientMachine_->resetState();
  }

  testEvaluator_->start();

  do {
    num = testOneBatchById(batchId);
    ++batchId;
  } while (num > 0);

  gradientMachine_->onPassEnd();
  testEvaluator_->finish();

  LOG(INFO) << " Pass=" << passId << " " << stats_.getStats(false)
            << " Eval: " << *testEvaluator_;

  if (intconfig_->distributeTest) {
    testEvaluator_->distributeEval(testParameterClient_.get());
    if (0 == intconfig_->trainerId) {
      LOG(INFO) << "distribute eval: " << *testEvaluator_;
    }
  }
}

void Tester::test() {
  CHECK(testDataProvider_) << "TestData is not specified";
  testDataProvider_->setSkipShuffle();
  testDataProvider_->reset();
  gradientMachine_->start(*config_, testDataProvider_);

  // For evaluation
  std::vector<std::string> modelList;
  std::string modelListFromConfig = intconfig_->modelList;
  std::string initModelPath = intconfig_->initModelPath;
  if (!modelListFromConfig.empty()) {
    loadFileList(modelListFromConfig, modelList);
    intconfig_->testPass = 0;
    intconfig_->numPasses = modelList.size();
    intconfig_->savingPeriod = 1;
263
    CHECK_EQ(intconfig_->testWait, 0) << "--test_wait must be 0 for evaluation";
Z
zhangjinchao01 已提交
264 265 266 267 268
  } else if (!initModelPath.empty()) {
    modelList.push_back(initModelPath);
    intconfig_->testPass = 0;
    intconfig_->numPasses = 1;
    intconfig_->savingPeriod = 1;
269
    CHECK_EQ(intconfig_->testWait, 0) << "--test_wait must be 0 for evaluation";
Z
zhangjinchao01 已提交
270 271 272 273 274 275
  }

  for (int i = intconfig_->testPass; i < intconfig_->numPasses; ++i) {
    int passId = i;
    if (passId % intconfig_->savingPeriod == 0) {
      if (intconfig_->testWait) {
276 277
        while (paramUtil_->loadParameters(
                   passId, true /*local*/, true /*remote*/) == false) {
Z
zhangjinchao01 已提交
278 279 280 281 282
          LOG(INFO) << "Waiting for parameters of pass " << passId;
          sleep(60);  // sleep 60s
        }
      } else {
        if (modelList.size() == 0) {
283 284 285
          CHECK_EQ(paramUtil_->loadParameters(
                       passId, true /*local*/, true /*remote*/),
                   true);
Z
zhangjinchao01 已提交
286
        } else {
287 288
          paramUtil_->loadParametersWithPath(
              modelList[i], true /*local*/, true /*remote*/);
Z
zhangjinchao01 已提交
289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
        }
      }
      if (IGradientMachineMode::trainWholeDataInOneBatch(intconfig_->mode)) {
        testOnePassBatch(passId);
      } else {
        testOnePass(passId);
      }
      if (passId + intconfig_->savingPeriod < intconfig_->numPasses) {
        // if there is at least 1 more pass to test, then call reset,
        // otherwise not.
        testDataProvider_->reset();
      }
    }
  }

  gradientMachine_->finish();
}

void Tester::printOutput(const std::vector<Argument>& outArgs,
308
                         std::ostream& os) {
Z
zhangjinchao01 已提交
309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
  size_t numOutputs = outArgs.size();
  size_t numIns = outArgs[0].getBatchSize();
  if (cpuMat_.size() != numOutputs || cpuVec_.size() != numOutputs) {
    cpuMat_.resize(numOutputs, nullptr);
    cpuVec_.resize(numOutputs, nullptr);
  }

  for (size_t i = 0; i < numOutputs; ++i) {
    if (outArgs[i].value != nullptr) {
      if (outArgs[i].value->useGpu()) {
        if (dynamic_cast<GpuMatrix*>(outArgs[i].value.get())) {
          size_t dim = outArgs[i].value->getWidth();
          Matrix::resizeOrCreate(cpuMat_[i], numIns, dim, false, false);
          cpuMat_[i]->copyFrom(*outArgs[i].value);
        } else if (dynamic_cast<GpuSparseMatrix*>(outArgs[i].value.get())) {
          auto sparseMat =
              dynamic_cast<GpuSparseMatrix*>(outArgs[i].value.get());
326 327 328 329 330 331 332
          cpuMat_[i] = Matrix::createSparseMatrix(sparseMat->getHeight(),
                                                  sparseMat->getWidth(),
                                                  sparseMat->getElementCnt(),
                                                  sparseMat->getValueType(),
                                                  sparseMat->format_,
                                                  false,  /* trans */
                                                  false); /* useGpu */
Z
zhangjinchao01 已提交
333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
          hl_stream_t stream = HPPL_STREAM_DEFAULT;
          cpuMat_[i]->copyFrom(*sparseMat, stream);
        } else {
          LOG(WARNING) << "Not supported gpu matrix type";
        }
      }
    } else if (outArgs[i].ids != nullptr) {
      if (outArgs[i].ids->useGpu()) {
        IVector::resizeOrCreate(cpuVec_[i], outArgs[i].ids->getSize(), false);
        cpuVec_[i]->copyFrom(*outArgs[i].ids);
      }
    } else if (outArgs[i].strs != nullptr) {
      continue;
    } else {
      LOG(WARNING) << "outArgs[" << i << "] has no data to print";
    }
  }

  for (size_t i = 0; i < numIns; ++i) {
    for (size_t j = 0; j < numOutputs; ++j) {
      if (outArgs[j].value != nullptr) {
        if (outArgs[j].value->useGpu()) {
          cpuMat_[j]->printOneRow(os, i);
        } else {
          outArgs[j].value->printOneRow(os, i);
        }
      } else if (outArgs[j].ids != nullptr) {
        if (outArgs[j].ids->useGpu()) {
          cpuVec_[j]->printOneElement(os, i);
        } else {
          outArgs[j].ids->printOneElement(os, i);
        }
      } else if (outArgs[j].strs != nullptr) {
        os << (*outArgs[j].strs)[i] << ";";
      }
    }
    os << std::endl;
  }
}
}  // namespace paddle