test_imperative.py 13.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

X
Xin Pan 已提交
15
import contextlib
16 17
import unittest
import numpy as np
X
Xin Pan 已提交
18
import sys
19 20 21

import paddle.fluid as fluid
from paddle.fluid import core
J
JiabinYang 已提交
22
from paddle.fluid.imperative.nn import FC
M
minqiyang 已提交
23
from test_imperative_base import new_program_scope
24 25


X
Xin Pan 已提交
26
class MyLayer(fluid.imperative.Layer):
27 28 29 30
    def __init__(self):
        super(MyLayer, self).__init__()

    def forward(self, inputs):
M
minqiyang 已提交
31
        x = fluid.layers.relu(inputs)
32
        self._x_for_debug = x
X
Xin Pan 已提交
33 34 35
        x = fluid.layers.elementwise_mul(x, x)
        x = fluid.layers.reduce_sum(x)
        return [x]
36 37


X
Xin Pan 已提交
38 39 40 41 42 43
class MyPyLayer(fluid.imperative.PyLayer):
    def __init__(self):
        super(MyPyLayer, self).__init__()

    @staticmethod
    def forward(inputs):
X
Xin Pan 已提交
44
        return np.tanh(inputs[0])
X
Xin Pan 已提交
45 46

    @staticmethod
X
Xin Pan 已提交
47 48
    def backward(inputs):
        inp, out, dout = inputs
X
Xin Pan 已提交
49
        return np.array(dout) * (1 - np.square(np.array(out)))
X
Xin Pan 已提交
50 51


X
Xin Pan 已提交
52
class MLP(fluid.imperative.Layer):
X
Xin Pan 已提交
53 54 55 56 57 58 59 60 61 62
    def __init__(self):
        super(MLP, self).__init__()
        self._fc1 = FC(3,
                       fluid.ParamAttr(
                           initializer=fluid.initializer.Constant(value=0.1)))
        self._fc2 = FC(4,
                       fluid.ParamAttr(
                           initializer=fluid.initializer.Constant(value=0.1)))

    def forward(self, inputs):
M
minqiyang 已提交
63
        x = self._fc1(inputs)
X
Xin Pan 已提交
64 65 66 67 68
        x = self._fc2(x)
        x = fluid.layers.reduce_sum(x)
        return x


69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
class SimpleRNNCell(fluid.imperative.Layer):
    def __init__(self, step_input_size, hidden_size, output_size, param_attr):
        super(SimpleRNNCell, self).__init__()
        self.step_input_size = step_input_size
        self.hidden_size = hidden_size
        self.output_size = output_size
        self._dype = core.VarDesc.VarType.FP32
        from paddle.fluid.layer_helper import LayerHelper
        self._helper = LayerHelper(
            'SimpleRNNCell', act="tanh", param_attr=param_attr)

    def _build_once(self, inputs, pre_hidden):
        i2h_param_shape = [self.step_input_size, self.hidden_size]
        h2h_param_shape = [self.hidden_size, self.hidden_size]
        h2o_param_shape = [self.output_size, self.hidden_size]
        self._i2h_w = self._helper.create_parameter(
            attr=self._helper.param_attr,
            shape=i2h_param_shape,
            dtype=self._dtype,
            is_bias=False)
        self._h2h_w = self._helper.create_parameter(
            attr=self._helper.param_attr,
            shape=h2h_param_shape,
            dtype=self._dtype,
            is_bias=False)
        self._h2o_w = self._helper.create_parameter(
            attr=self._helper.param_attr,
            shape=h2o_param_shape,
            dtype=self._dtype,
            is_bias=False)

    def forward(self, input, pre_hidden):

        tmp_i2h = self._helper.create_variable_for_type_inference(self._dtype)
        tmp_h2h = self._helper.create_variable_for_type_inference(self._dtype)
        hidden = self._helper.create_variable_for_type_inference(self._dype)
        out = self._helper.create_variable_for_type_inference(self._dype)
        softmax_out = self._helper.create_variable_for_type_inference(
            self._dtype)
        reduce_out = self._helper.create_variable_for_type_inference(
            self._dtype)
        self._helper.append_op(
            type="mul",
            inputs={"X": input,
                    "Y": self._i2h_w},
            outputs={"Out": tmp_i2h},
            attrs={"x_num_col_dims": 1,
                   "y_num_col_dims": 1})

        self._helper.append_op(
            type="mul",
            inputs={"X": pre_hidden,
                    "Y": self._h2h_w},
            outputs={"Out": tmp_h2h},
            attrs={"x_num_col_dims": 1,
                   "y_num_col_dims": 1})

        self._helper.append_op(
            type="elementwise_add",
            inputs={'X': tmp_h2h,
                    'Y': tmp_i2h},
            outputs={'Out': hidden},
            attrs={'axis': -1,
                   'use_mkldnn': False})
        hidden = self._helper.append_activation(hidden)

        self._helper.append_op(
            type="mul",
            inputs={"X": hidden,
                    "Y": self._h2o_w},
            outputs={"Out": out},
            attrs={"x_num_col_dims": 1,
                   "y_num_col_dims": 1})

        self._helper.append_op(
            type="softmax",
            inputs={"X": out},
            outputs={"Out": softmax_out},
            attrs={"use_cudnn": False})

        self._helper.append_op(
            type='reduce_sum',
            inputs={'X': softmax_out},
            outputs={'Out': reduce_out},
            attrs={'dim': None,
                   'keep_dim': False,
                   'reduce_all': True})

        return reduce_out, hidden


J
JiabinYang 已提交
160
class SimpleRNN(fluid.imperative.Layer):
J
JiabinYang 已提交
161
    def __init__(self):
J
JiabinYang 已提交
162
        super(SimpleRNN, self).__init__()
J
JiabinYang 已提交
163 164 165 166 167 168
        self.seq_len = 4
        self._cell = SimpleRNNCell(
            3,
            3,
            3,
            fluid.ParamAttr(initializer=fluid.initializer.Constant(value=0.1)))
J
JiabinYang 已提交
169 170

    def forward(self, inputs):
J
JiabinYang 已提交
171
        outs = list()
J
JiabinYang 已提交
172 173 174 175 176 177 178 179 180
        pre_hiddens = list()

        init_hidden = fluid.layers.tensor.create_parameter(
            attr=fluid.ParamAttr(
                initializer=fluid.initializer.Constant(value=0.1)),
            shape=[1, 3],
            dtype='float32',
            is_bias=False)
        pre_hidden = init_hidden
J
JiabinYang 已提交
181
        for i in range(self.seq_len):
J
JiabinYang 已提交
182 183 184
            input = fluid.layers.slice(
                inputs, axes=[1], starts=[i], ends=[i + 1])
            input = fluid.layers.reshape(input, shape=[1, 3])
J
JiabinYang 已提交
185 186
            out_softmax, pre_hidden = self._cell(input, pre_hidden)
            outs.append(out_softmax)
J
JiabinYang 已提交
187

J
JiabinYang 已提交
188
        return outs, pre_hiddens
J
JiabinYang 已提交
189 190


191
class TestImperative(unittest.TestCase):
X
Xin Pan 已提交
192
    def test_sum_op(self):
X
polish  
Xin Pan 已提交
193
        x = np.ones([2, 2], np.float32)
X
Xin Pan 已提交
194 195 196
        with fluid.imperative.guard():
            inputs = []
            for _ in range(10):
X
polish  
Xin Pan 已提交
197
                inputs.append(fluid.imperative.base.to_variable(x))
X
Xin Pan 已提交
198 199 200
            ret = fluid.layers.sums(inputs)
            loss = fluid.layers.reduce_sum(ret)
            loss._backward()
X
polish  
Xin Pan 已提交
201 202
            self.assertTrue(np.allclose(ret._numpy(), x * 10))
            self.assertTrue(np.allclose(inputs[0]._gradient(), x))
X
Xin Pan 已提交
203

204 205 206 207
    def test_layer(self):
        with fluid.imperative.guard():
            cl = core.Layer()
            cl.forward([])
X
Xin Pan 已提交
208
            l = fluid.imperative.Layer()
M
minqiyang 已提交
209
            self.assertRaises(NotImplementedError, l.forward, [])
X
polish  
Xin Pan 已提交
210 211 212 213 214 215 216 217 218 219

    def test_pylayer_func_id(self):

        with fluid.imperative.guard():

            class PyLayer1(fluid.imperative.PyLayer):
                def __init__(self):
                    super(PyLayer1, self).__init__()

                @staticmethod
M
minqiyang 已提交
220 221
                def forward(input):
                    return input
X
polish  
Xin Pan 已提交
222 223

                @staticmethod
M
minqiyang 已提交
224 225
                def backward(input):
                    return input
X
polish  
Xin Pan 已提交
226 227 228 229 230 231

            class PyLayer2(fluid.imperative.PyLayer):
                def __init__(self):
                    super(PyLayer2, self).__init__()

                @staticmethod
M
minqiyang 已提交
232 233
                def forward(input):
                    return input
X
polish  
Xin Pan 已提交
234 235

                @staticmethod
M
minqiyang 已提交
236 237
                def backward(input):
                    return input
X
polish  
Xin Pan 已提交
238 239 240

            py_layer_1 = PyLayer1()
            py_layer_2 = PyLayer2()
M
minqiyang 已提交
241 242
            py_layer_1(fluid.imperative.base.to_variable(np.ones([2, 2])))
            py_layer_2(fluid.imperative.base.to_variable(np.ones([2, 2])))
X
polish  
Xin Pan 已提交
243 244 245 246 247
            id = py_layer_1.forward_id
            self.assertGreater(id, 0)
            self.assertEqual(py_layer_1.backward_id, id + 1)
            self.assertEqual(py_layer_2.forward_id, id + 2)
            self.assertEqual(py_layer_2.backward_id, id + 3)
M
minqiyang 已提交
248
            py_layer_1(fluid.imperative.base.to_variable(np.ones([2, 2])))
X
polish  
Xin Pan 已提交
249
            self.assertEqual(py_layer_1.forward_id, id)
250

X
Xin Pan 已提交
251
    def test_pylayer(self):
X
Xin Pan 已提交
252
        np_inp = np.ones([2, 2], np.float32)
X
Xin Pan 已提交
253 254
        with fluid.imperative.guard():
            my_py_layer = MyPyLayer()
X
Xin Pan 已提交
255
            var_inp = fluid.imperative.base.to_variable(np_inp)
M
minqiyang 已提交
256
            outs = my_py_layer(var_inp)
X
Xin Pan 已提交
257 258 259 260 261 262 263 264 265 266 267 268 269
            dy_out = np.sum(outs[0]._numpy())
            outs[0]._backward()
            dy_grad = var_inp._gradient()

        with new_program_scope():
            inp = fluid.layers.data(
                name="inp", shape=[2, 2], append_batch_size=False)
            # TODO(panyx0718): Paddle doesn't diff against data `inp`.
            x1 = inp * 1
            # TODO(panyx0718): If reduce_sum is skipped, the result is wrong.
            x = fluid.layers.reduce_sum(fluid.layers.tanh(x1))
            param_grads = fluid.backward.append_backward(
                x, parameter_list=[x1.name])[0]
M
minqiyang 已提交
270 271
            exe = fluid.Executor(fluid.CPUPlace(
            ) if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0))
X
Xin Pan 已提交
272 273 274 275 276 277 278

            static_out, static_grad = exe.run(
                feed={inp.name: np_inp},
                fetch_list=[x.name, param_grads[1].name])

        self.assertTrue(np.allclose(dy_out, static_out))
        self.assertTrue(np.allclose(dy_grad, static_grad))
X
Xin Pan 已提交
279

280
    def test_layer_in_out(self):
X
Xin Pan 已提交
281
        np_inp = np.array([1.0, 2.0, -1.0], dtype=np.float32)
282
        with fluid.imperative.guard():
M
minqiyang 已提交
283
            var_inp = fluid.imperative.base.to_variable(np_inp)
284
            l = MyLayer()
M
minqiyang 已提交
285
            x = l(var_inp)[0]
286
            self.assertIsNotNone(x)
X
Xin Pan 已提交
287
            dy_out = x._numpy()
288
            x._backward()
X
Xin Pan 已提交
289 290 291 292 293 294 295 296 297
            dy_grad = l._x_for_debug._gradient()

        with new_program_scope():
            inp = fluid.layers.data(
                name="inp", shape=[3], append_batch_size=False)
            l = MyLayer()
            x = l(inp)[0]
            param_grads = fluid.backward.append_backward(
                x, parameter_list=[l._x_for_debug.name])[0]
M
minqiyang 已提交
298 299
            exe = fluid.Executor(fluid.CPUPlace(
            ) if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0))
X
Xin Pan 已提交
300 301 302 303 304 305 306 307 308 309 310

            static_out, static_grad = exe.run(
                feed={inp.name: np_inp},
                fetch_list=[x.name, param_grads[1].name])

        self.assertTrue(np.allclose(dy_out, static_out))
        self.assertTrue(np.allclose(dy_grad, static_grad))

    def test_mlp(self):
        np_inp = np.array([[1.0, 2.0], [3.0, 4.0]], dtype=np.float32)
        with fluid.imperative.guard():
M
minqiyang 已提交
311
            var_inp = fluid.imperative.base.to_variable(np_inp)
X
Xin Pan 已提交
312
            mlp = MLP()
M
minqiyang 已提交
313
            out = mlp(var_inp)
X
Xin Pan 已提交
314 315 316 317 318 319 320 321 322 323 324
            dy_out = out._numpy()
            out._backward()
            dy_grad = mlp._fc1._w._gradient()

        with new_program_scope():
            inp = fluid.layers.data(
                name="inp", shape=[2, 2], append_batch_size=False)
            mlp = MLP()
            out = mlp(inp)
            param_grads = fluid.backward.append_backward(
                out, parameter_list=[mlp._fc1._w.name])[0]
M
minqiyang 已提交
325 326
            exe = fluid.Executor(fluid.CPUPlace(
            ) if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0))
X
Xin Pan 已提交
327 328 329 330 331 332 333 334
            exe.run(fluid.default_startup_program())

            static_out, static_grad = exe.run(
                feed={inp.name: np_inp},
                fetch_list=[out.name, param_grads[1].name])

        self.assertTrue(np.allclose(dy_out, static_out))
        self.assertTrue(np.allclose(dy_grad, static_grad))
335

J
JiabinYang 已提交
336 337 338 339 340
    def test_rnn(self):
        np_inp = np.array([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 8.0, 9.0],
                           [10.0, 11.0, 12.0]])
        np_inp = np_inp.reshape((1, 4, 3))
        np_inp = np_inp.astype(np.float32)
J
JiabinYang 已提交
341 342 343 344 345 346 347 348 349 350
        with fluid.imperative.guard():
            var_inp = fluid.imperative.base.to_variable(np_inp)
            var_inp = fluid.layers.reshape(var_inp, shape=[1, 4, 3])
            simple_rnn = SimpleRNN()
            outs, pre_hiddens = simple_rnn.forward(var_inp)
            dy_out = outs[3]._numpy()
            outs[3]._backward()
            dy_grad_h2o = simple_rnn._cell._h2o_w._gradient()
            dy_grad_h2h = simple_rnn._cell._h2h_w._gradient()
            dy_grad_i2h = simple_rnn._cell._i2h_w._gradient()
J
JiabinYang 已提交
351 352 353 354 355 356

        with new_program_scope():
            inp = fluid.layers.data(
                name="inp", shape=[1, 4, 3], append_batch_size=False)
            simple_rnn = SimpleRNN()
            outs, pre_hiddens = simple_rnn(inp)
J
JiabinYang 已提交
357
            param_grads = fluid.backward.append_backward(outs[3])
J
JiabinYang 已提交
358 359
            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())
J
JiabinYang 已提交
360
            static_out, static_grad_h2o, static_grad_h2h, static_grad_i2h = exe.run(
J
JiabinYang 已提交
361
                feed={inp.name: np_inp},
J
JiabinYang 已提交
362 363 364 365
                fetch_list=[
                    outs[3].name, param_grads[0][1].name,
                    param_grads[1][1].name, param_grads[2][1].name
                ])
J
JiabinYang 已提交
366 367 368 369
        self.assertTrue(np.allclose(dy_out, static_out))
        self.assertTrue(np.allclose(dy_grad_h2o, static_grad_h2o))
        self.assertTrue(np.allclose(dy_grad_h2h, static_grad_h2h))
        self.assertTrue(np.allclose(dy_grad_i2h, static_grad_i2h))
J
JiabinYang 已提交
370

371 372 373

if __name__ == '__main__':
    unittest.main()